SAVANNAH RIVER REMEDIATION

LIQUID WASTE DISPOSITION PROJECTS

Project #G-002 Tank 48 Treatment Process (TTP)
Risk and Opportunity Analysis Report
DISCLAIMER

This report was prepared for the United States Department of Energy under Contract No. DE-AC09-09SR22505 and is an account of work performed under that contract. Reference herein to any specific commercial product, process, or service does not necessarily constitute or imply endorsement, recommendation, or favoring of same by Savannah River Remediation LLC or by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
SAVANNAH RIVER REMEDIATION
LIQUID WASTE DISPOSAL PROJECTS
TANK 48 TTP PROJECT
RISK ANALYSIS REPORT

Prepared by:

Gavin Woodship
Risk Management

Date: 10/27/10

Approved by:

Sergio Mazul
Project Engineer

Date: 10/27/10

Ryan McNeel
DA Process Lead

Date: 10/27/10

Mary Pallon
Construction Lead

Date: 10/27/10

Steve Hall
DA Mechanical Lead

Date: 10/27/10

Mark Roque
Project Controls Manager

Date: 10/27/10

Chris Johnson
DA Manager

Date: 10/27/10

Srikant Mehta
Deputy/Project Manager

Date: 10/27/10

John Contardi
Project Engineering Manager

Date: 10/27/10

Tim Heath
Deputy Project Manager

Date: 10/27/10

Jon Lunn
Project Manager

Date: 10/27/10

Ben Young
LWO-Mgr of Projects

Date: 10/27/10

Kim Cassara
Director PD&CS

Date: 10/27/10

Charles Lampley
Tank Farm Operations Management

Date: 10/27/10

Kim Hauer
Project Director

Date: 10/27/10

Carl Lanigan
TTP DOE Federal Project Director

Date: 11/18/11
SUMMARY OF REVISIONS

<table>
<thead>
<tr>
<th>Issue Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/20/06</td>
<td>0</td>
<td>Initial Issue</td>
</tr>
<tr>
<td>10/14/08</td>
<td>1</td>
<td>General revision, incorporating updated risk data, no change bars used.</td>
</tr>
<tr>
<td>12/18/09</td>
<td>2</td>
<td>General revision, incorporating updated risk data, no change bars used.</td>
</tr>
<tr>
<td>1/28/2010</td>
<td>3</td>
<td>Corrected typographical error (unmitigated number of low risks is 4 and total of unmitigated risks is therefore 66) pages 6 and 12.</td>
</tr>
<tr>
<td>6/16/2010</td>
<td>4</td>
<td>General revision, incorporating updated risk data, no change bars used.</td>
</tr>
<tr>
<td>10/26/10</td>
<td>5</td>
<td>General revision, incorporating updated risk data, no change bars used.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

EXECUTIVE SUMMARY.. 6

ABBREVIATIONS and ACRONYMS.. 8

1.0 OVERVIEW ... 10

1.1 Project Description .. 10

2.0 RISK MANAGEMENT PROCESS .. 11

2.1 Background .. 11

2.2 Team Members .. 12

2.3 Risk Assessment Process and Methodology .. 12

2.4 Assumptions .. 14

3.0 RESULTS .. 14

4.0 SAFETY IN DESIGN.. 16

5.0 CONCLUSIONS .. 17

6.0 REFERENCES ... 20

7.0 APPENDICES .. 21

7.1: Assessable Elements .. 22

7.2: Risk Likelihood Table .. 23

7.3: Risk Consequences Table .. 24

7.4: Risk Topics ... 25

7.5: Safety in Design Topics .. 27

7.6: Risk Level Matrix .. 29

7.7: Risk and Opportunity Summary Table .. 30

7.8: Risk and Opportunity Assessment Forms .. 44

7.9: Riskometer .. 118

7.10: T&PRA Analysis ... 119
SAVANNAH RIVER REMEDIATION
LIQUID WASTE DISPOSITION PROJECTS
TANK 48 TTP PROJECT
RISK ANALYSIS REPORT

EXECUTIVE SUMMARY

Savannah River Remediation (SRR) LLC is tasked with the removal and disposition of waste currently stored within Liquid Waste Tanks at SRS. To accomplish this task the Liquid Waste System Plan (Reference 4) was developed which, during its implementation will require the definition and execution of discrete operational campaigns, projects and workscopes. A Program Risk and Opportunity Management Plan (ROMP) (Reference 1) was prepared to address the overall risks associated with the Liquid Waste System Plan implementation, and present the risk management process for the SRR Contract Performance Baseline (CPB).

Successful Liquid Waste System Plan execution requires the deployment of new facilities and processes (e.g. Salt Waste Processing Facility [SWPF], Saltstone Disposal Units [SDUs]), modifications of existing facilities and infrastructure (e.g. Defense Waste Processing Facility [DWPF], Saltstone), and system and equipment replacement and maintenance necessary to maintain the capability of waste storage, waste removal and waste processing.

Waste removal is closely followed by tank cleaning and closure activities, infrastructure closure and eventually facility and area closure in the final years of the Liquid Waste System Plan.

In addition to ongoing facility operations, projects will be initiated and implemented throughout the Liquid Waste System Plan life cycle to ensure successful execution.

This risk and opportunity analysis report (ROAR) addresses risks and opportunities associated with one of the Liquid Waste System Plan Baseline support projects, namely the Tank 48 Treatment Process (TTP) Project. This project has been categorized as a capital asset project subject to full DOE O413.3A compliance (References 7 and 8). This report describes how the six steps of the risk management process (i.e. planning, identification, grading, handling, impact determination and integration) will be applied to this project and satisfies the requirements of providing a Risk and Opportunity Management Plan for the Project while also presenting the associated levels of risk, the risk handling strategies (RHSs) to be employed, the residual risk, the process for deriving management reserve (MR) and contingency and presenting the results of this process.

The initial issuance of this report was used as a basis for development of a conceptual estimate in support of Critical Decision (CD)-1. It was subsequently revised since the commencement of work after CD-1. This revision documents the changes to date in the progression through Preliminary Design. The risk data developed since the last update were reviewed by the TTP Project Team and then a brainstorming approach was used to identify any additional risks or opportunities which were then validated and handling strategies developed.
A total of 67 risks were validated. These risks were categorized as contractor-owned or DOE-owned risks. These comprised of 32 high, 23 moderate, 3 low risks 5 operational vulnerabilities, 3 Program risks and one risk for overall funding of the project. Risk handling strategies were developed for all risks.

After application of the RHs, 49 risks will be mitigated, 11 risks avoided and 7 risks accepted. The resulting handled risks that would remain open with the potential to impact the project, based on the worst case residual impact assessed by the Team were comprised of 12 high risk, 20 moderate risks, 12 low risks. Also remaining open, but with no contribution to T&PRA were 8 operational vulnerabilities, 3 Program risks and one risk for overall funding of the project, requiring a project re-baselining if realized.

All opportunities have been closed and no new opportunities identified.

The residual risk levels, estimate and schedule uncertainty were analyzed and used to derive a Management Reserve (MR) and DOE Contingency estimate as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>SRR MR</th>
<th>DOE Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>$6,859,523</td>
<td>$8,497,619</td>
</tr>
<tr>
<td>Schedule</td>
<td>$3,634,960</td>
<td>$1,590,663</td>
</tr>
<tr>
<td>T&PRA</td>
<td>$4,515,960</td>
<td>$12,651,500</td>
</tr>
<tr>
<td>Total</td>
<td>$15,010,443</td>
<td>$22,739,782</td>
</tr>
</tbody>
</table>

To achieve an 80% confidence level, the required schedule contingency was calculated to be 7 Months.

It must be noted that although the required 80% confidence level is attained by providing the TTP Project with fully funded T&PRA based contingencies, a risk remains (DOE-owned risk 016 “Implementation of DNFSB Recommendation 2004-2 Required”), that if realized in the worst case could result in the need for an active confinement ventilation system which would exceed the current risk-based T&PRA contingencies. Project management will focus on mitigating this risk as a priority early in the TTP Project life cycle to avoid the potential for re-baselining of the project should the worst case impact be realized.
ABBREVIATIONS and ACRONYMS

BCP – Baseline Change Proposal
CD – Critical Decision
CL – Confidence Level
CPB – Contract Performance Baseline
DOE – Department of Energy
DNSFB – Defense Nuclear Facilities Safety Board
DSA - Documented Safety Analysis
DWPF – Defense Waste Processing Facility
FBSR – Fluidized Bed Steam Reforming
GAC – Granular Activated Charcoal
HTF – H-Area Tank Farm
ITP – In-Tank Precipitation
IWT – Industrial Waste Treatment
LWO – Liquid Waste Operations
MR – Management Reserve
PDT – Product Dissolution Tank
PST – Product Storage Tank
ROAF – Risk and Opportunity Assessment Form
ROAR – Risk and Opportunity Analysis
ROMP – Risk and Opportunity Management Plan
RHS – Risk Handling Strategy
SCDHEC – South Carolina Department of Health and Environmental Control
SDIT – Safety in Design Integration Team
SDU – Saltstone Disposal Units
SRR – Savannah River Remediation
SRS – Savannah River Site
SRNL – Savannah River National Laboratories
SRNS – Savannah River Nuclear Solutions
SSF – Saltstone Facility
SWPF – Salt Waste Processing Facility
T&PRA – Technical and Programmatic Risk Assessment
TPB – Tetraphenylborate
TR&C – Task Requirements and Criteria
TTP – Tank 48 Treatment Process
WAC – Waste Acceptance Criteria
WFT – Waste Feed Tank
URS SMS – URS Safety Management Solutions
1.0 OVERVIEW

SRR is tasked with the removal and disposition of waste currently stored within Liquid Waste Tanks at SRS. To accomplish this task the Liquid Waste System Plan (Reference 1) was developed which, during its implementation will require the definition and execution of discrete operational campaigns, projects and workscopes.

Successful Liquid Waste System Plan execution requires the deployment of new facilities and processes (e.g. SWPF, SDUs), modification of existing facilities and infrastructure (e.g. DWPF, Saltstone), and system and equipment replacement and maintenance necessary to maintain the capability of waste storage, waste removal and waste processing.

Waste removal is closely followed by tank cleaning and closure activities, infrastructure closure and eventually facility and area closure in the final years of the Liquid Waste System Plan. In addition to ongoing facility operations, projects will be initiated and implemented throughout the Liquid Waste System plan life cycle to ensure successful execution.

The PBS-SR-0014 Risk and Opportunity Management Plan (ROMP) (Reference 1) presents the overall Liquid Waste System Plan execution risks and opportunities, summarizes the individual projects ROAR data. The process used to develop the PBS-SR-0014 ROMP and this project specific ROAR are defined within manual S14, Procedure 1.12 (Reference 9).

The following projects relate to the integration of Tank 48 back into the Liquid Waste System:

- Tank 48 Treatment Process (TTP Project)
- Tank 48 Return to Service
- Tank 48 Heel Disposition

This ROAR is applicable to the TTP Project.

1.1 Project Description

The TTP Project has been categorized as a Capital Asset Project subject to full DOE O413.3A compliance (References 7 and 8).

Tank 48H currently contains approximately 240,000 gallons of salt solution containing 21,800 kilograms of potassium and cesium tetrphenylborate (TPB) salts generated during the 1983 In-Tank Precipitation (ITP) Process demonstration and the subsequent operation of the ITP facility in 1995/1996. The organic nature of TPB salts makes the Tank 48H waste incompatible with the existing treatment and disposition facilities. In order to meet organic requirements in the current Documented Safety Analysis (DSA), which limit the amount of TPB that can remain in the tank when returned to service and due to the need for additional liquid waste storage, successful disposition of the material in Tank 48H is essential.
Evaluation of alternative methods for disposition of the TPB resulted in the selection of a Fluidized Bed Steam Reforming (FBSR) process. A detailed description of the scope of the TTP Project is contained within Reference 2. In summary the TTP Project will design, install, test, startup and turnover to operations a FBSR process and support systems in H-Area tank Farm using Building 241-96H to house the primary process system.

2.0 RISK MANAGEMENT PROCESS

2.1 Background
The Program ROMP (Reference 1) is maintained for the overall Liquid Waste System Plan execution at a high level to address the risks and opportunities that impact the program.

This ROAR provides the results of the TTP Project continuing assessment and will be periodically revised to incorporate updated information. The data developed and presented within this ROAR is an update to the data within the previous ROAR and is the baseline Risk Register for the TTP Project. The project team may add additional risks or opportunities to the risk register prior to any re-issuance of the report. This will allow timely evaluation and ensure handling strategies are developed as needed.

This report describes how the six steps of the risk management process (i.e. planning, identification, grading, handling, impact determination and integration) will be applied to this project and satisfies the requirements of providing a Risk and Opportunity Management Plan for the Project while also presenting the associated levels of risk, the risk handling strategies (RHSs) to be employed, the residual risk, the process for deriving management reserve (MR) and contingency and presenting the results of this process.
2.2 Team Members

As a minimum the Team comprised of the following personnel:

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Lanigan</td>
<td>DOE Federal Project Director</td>
</tr>
<tr>
<td>Charles Lampley</td>
<td>Tank Farm Operations</td>
</tr>
<tr>
<td>Jon Lunn</td>
<td>Project Manager</td>
</tr>
<tr>
<td>John Contardi</td>
<td>Project Engineering Manager</td>
</tr>
<tr>
<td>Mark Roupe</td>
<td>Project Controls Manager</td>
</tr>
<tr>
<td>Tim Heath</td>
<td>Deputy Project Manager</td>
</tr>
<tr>
<td>Srikant Mehta</td>
<td>Deputy Project Manager</td>
</tr>
<tr>
<td>Caroline Atseff</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Steve Hall</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Earl Brass</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Sam Shah</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Gary Cauthen</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Gerry Eide</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Celia Aponte</td>
<td>Design Authority</td>
</tr>
<tr>
<td>Sergio Mazul</td>
<td>Design Services</td>
</tr>
<tr>
<td>Thomas Colleran</td>
<td>Nuclear Safety Engineering</td>
</tr>
<tr>
<td>Mary Pallon</td>
<td>Construction Lead</td>
</tr>
<tr>
<td>Gavin Winship</td>
<td>Risk Management</td>
</tr>
</tbody>
</table>

During the course of the risk assessment representatives from other contributing organizations were requested to provide input for a specific set of risks or requested to sit on the team during the assessment meeting.

2.3 Risk Assessment Process and Methodology

Risk and opportunity assessments are conducted by formal meetings using a structured format to implement the risk assessment methodologies outlined in References 3 and 9. The major steps of the process are: Planning, Risk Identification, Risk Grading, Risk Handling, Impact Determination and Risk Integration which are discussed below.

Planning

Assessable elements were developed to guide the team though the scope of the risk assessment (Appendix 7.1). Standard likelihood criteria are used for all Projects, however for each project, consequence threshold criteria are tailored based on the overall cost of the project and importance of schedule to achieving Liquid Waste System Plan execution. Consequence criteria are shown in Appendix 7.3.

Identification

The identification process was performed in a brainstorming session with the team and subject matter experts by identifying the risks associated with each assessable element. To assist risk
identification a Risk Topics sheet (Appendix 7.4) that identifies risk typical types by area was used. Additionally, a Safety in Design Topics sheet (Appendix 7.5) was used to assist in identification of those specific risks associated with Safety in Design considerations.

Each identified risk was documented on a Risk and Opportunity Assessment Form (ROAF) (Appendix 7.8). Each has a documented basis, event and risk description to allow a full understanding of the risk.

Risks are also categorized as Contractor (SRR) owned or DOE owned. Risks are categorized as DOE owned where the contractor has no control over the risk event as in the case of external influences (e.g. new standards, regulations etc.)

Grading
The likelihood of risk occurrence was selected from the Risk Likelihood Table (Appendix 7.2) and a basis for the likelihood documented on the ROAF. The consequences (schedule impact and cost impact) of the risk occurring was then determined by the Team, the corresponding consequence identifier assigned from the Risk Consequences Table (Appendix 7.3) and a basis for the consequences documented on the ROAF. The likelihood and consequences were used in conjunction with Risk Level Matrix (Appendix 7.6) to determine the risk level.

Risk Handling
A RHS was developed for all risks by the Project Team. The RHS was documented on the ROAF, action items developed and responsibility for completion assigned. The following RHSs types can be employed:

Avoid – This strategy focuses on totally eliminating the specific risk-driving event. Once the RHS is implemented the risk will be reduced to zero, no residual risk remains with this strategy.

Mitigate – This strategy identifies specific steps or actions to reduce the consequence or likelihood of the risk. There will be residual risk after the implementation of this RHS.

Accept – Accepting a risk is essentially a “no action” strategy. Selection of this strategy is based upon the decision that it is more cost effective to continue the activity as planned with no resources specifically dedicated to addressing the risk. The residual risk is equal to the initial risk with this RHS.

Impact Determination
If accept or mitigate is employed as a RHS, residual risk will remain after the RHS is complete. This residual risk was estimated and entered on the ROAF as quantified cost and/or schedule impact (worst, most likely and best cases) with an associated likelihood of occurrence.
Risk Integration

The data developed during this risk assessment is maintained electronically within the Project Risk Register and to assist in integration activities a risk owner has been assigned to each risk. Risk owners report on risk status using the riskometer (Appendix 7.9). Where helpful, risk triggers are tied to schedule activities. Risk triggers define the point at which a RHS must be completed to allow successful risk mitigation (trigger open) and the point at which risk may no longer be realized (trigger closed). Handling strategies are tracked on project action lists and where practical, incorporated into the Project Schedule. The cost of handling strategies is included in the Project Cost Baseline.

As new risks are identified and existing risks change, the Project Risk Register will be updated on a timely basis. Periodically this data will be used to produce updated ROAFs and will be issued in a revision to this report.

2.4 Assumptions

Assumptions for the TTP Project are listed and discussed in detail within Reference 2. These assumptions were reviewed as part of this risk assessment and any risks associated with those assumptions identified and included in the risk data for the TTP Project.

3.0 RESULTS

The following update was performed to the TTP Project risks:

New Risks (10)

119 Materials Pricing Increases Vendor Costs
120 Additional Design Activities Required to Meet ASME VIII High Temperature Creep Criteria
121 DOE do not Accept Procurement Strategy
122 Testing of Auger Grinder Indicates Major Design Rework is Required
123 Design Comment Resolution Delays Design Completion
124 Process Optimization Continues After Flowsheets are Finalized
125 Numbering System Convention Changes
126 Vendor Underestimates Complexity of SRS SOW Requirements
127 Flow-down Requirements Imposed on Sub-vendors Impede Lower-tier Procurement Process
128 Refractory Damaged During Transportation

Closed (10)

018 Product Must Go to a Different Receipt Tank - This risk no longer applies to the TTP Project. TTP Project will provide a transfer path to DB7. At this point the Tank Farm Operations will direct the FBSR waste to an appropriate waste Tank (e.g. Tank 42, 51 or 39) considering the constraints of the sludge batching process. Any risks associated with the downstream impacts have been addressed in the TTP Project Risk Assessment and the Program Risk Assessment.

042 Discovery of Soil Contamination - This risk no longer applies as there are no potential contamination issues with excavation inside of the building and no significant excavation is being performed outside of 241-96H. Any delays/costs would therefore be contained within standard estimate and schedule uncertainty.

071 Unacceptable Ventilation Impact - Risk has been realized and trend has been initiated.

078 Scope reductions and conceptual phase CD-1 package assumptions do not materialize - Risks realized and impacts included within the baseline estimate.

079 Adequacy of Existing Floor Slab for the FBSR Skid - Risk has been realized.

086 Depleted Uranium is Required to be Added Prior to Transfer to Tank Farm Receipt Tank - This risk has not been realized. Reference Report SRR-LWP-2010-00034, Revision 0.

094 Startup/Shutdown or Process Upset Creates Material for Which There is no Disposition path - A recycle path has been provided by piping redesign. This risk is no longer credible.

113 SCDHEC/EPA Require Offgas and Product Stream Additional Sampling During Startup/Initial Operations -

114 Transport of Solids Creates Unacceptable Accident Consequences - Risk has not been realized, (Reference PCHA, WSRC-TR-2006-00288, and S-CLC-H-01189, Revision 0)

120 Additional Design Activities Required to Meet ASME VIII High Temperature Creep Criteria - This risk was closed during evaluation as high temperature creep is not considered a problem as these vessels are designed for a lower temperature than the IWTU vessels, and per code, are below the threshold for creep analysis.

After the update, 67 risks remained, (summarized in Appendix 7.7), 32 high risks, 23 moderate risks, 3 low risks 5 operational vulnerabilities, 3 Program risks and one risk for overall funding of the project. Risk handling strategies were developed for the 67 remaining risks as appropriate:

- Risks Mitigated (49)
- Risk Avoided (11)
- Risks Accepted (7)

The resulting handled risks that would remain open with the potential to impact the project, based on the worst case impact assessed by the Team comprised of 12 high risks, 20 moderate risks, 12 low risks.
Also remaining open, but with no contribution to T&PRA were 8 operational vulnerabilities, 3 Program risks and one risk for overall funding of the project, requiring a project re-baselining if realized.

The following 7 risks were categorized as DOE-owned risks:

001 Funding Availability
007 DOE Directed Changes to Technical Requirements
012 Stakeholder Participation
016 Implementation of DNFSB Recommendation 2004-2 Required
033 Long Lead Procurement is Denied or Delayed
117 Additional Project Reviews are Required
118 Legacy Costs Increase
121 DOE do not Accept Procurement Strategy

No new opportunities were added. The following two opportunities were closed:

105 Use Existing Tank 48 Transfer Pump - The existing Tank 48 Transfer Pump is assumed not to work and a replacement is planned. An opportunity exists that the existing Tank 48 Transfer Pump can be tested, repaired as necessary and be qualified for use and avoid the expense of a new transfer pump. PM record search will be performed, the pump tested to identify problems and repaired as necessary. Opportunity has been realized

106 Use Existing Standby Nitrogen System Tanks for Liquid Oxygen Storage - Currently, the TTP Project is planning to procure and install oxygen storage and supply capability. HTF will deinventory the existing Standby Nitrogen System tanks located near the 241-96H Building. An opportunity exists that these tanks can be used for oxygen storage for the FBSR process. The existing design will be reviewed for compatibility with intended use as oxygen storage and if feasible, Management approval obtained for use of tanks. Opportunity could not be realized.

Refer to Appendix 7.7 for a summary of results.

4.0 SAFETY IN DESIGN

To ensure risks and opportunities relating to Safety in Design are highlighted as discussed within DOE Standard 1189 (Reference 6), the following is a listing of the specific Safety in Design risk associated with this Project:

013 Safety Basis not Accepted By DOE
016 Implementation of DNFSB Recommendation 2004-2 Required
019 Addition of the GAC to Design
020 Analysis of 241-96H Structure Shows Not-Qualified for II/I Concerns
023 Design Assumptions and Design Uncertainties Result In Rework
5.0 CONCLUSIONS

5.1 Calculation of MR and Contingency

Management Reserve (MR) and Contingency are used to provide resources to combat the realization of technical and programmatic risks and the negative impacts schedule and estimate uncertainty. MR is funded, held by SRR and accessed by an appropriate change control mechanism and is sometimes referred to as “Contractor MR.” Contingency is funded, held by the DOE and is sometimes referred to as “DOE Contingency”. MR and Contingency are derived from the following components:

- Estimate Contingencies
- Schedule Contingencies
- T&PRA Contingencies

Estimate Contingencies

Estimate contingency addresses uncertainty within the project baseline. Estimate contingency will be established through the completion of a Monte Carlo simulation using BECRAC® analysis software. This software utilizes a probabilistic determination method and yields the probability of overruns or under runs to the total project cost. The Monte Carlo simulation model represents the summary of the logic and overall approach for the preparation of the project cost estimate. The methodology establishes the major components of the estimate called “terms” such as construction cost, labor cost, project support costs, and utilizes the estimate for these
terms to establish a weighting for each for use in the simulation model. The project team establishes the major elements of uncertainty in the estimate based upon knowledge of the work scope.

Based on the judgment of the project team, a probability distribution is created for each of these elements of estimate uncertainty. On the basis of these probability distributions and the cost for the terms of the project estimate, a Crystal Ball® simulation run is conducted to establish the cost estimate contingency at the 50 and 80 percent (%) confidence levels.

Schedule Contingencies

Schedule contingency addresses uncertainty within the project schedule baseline. Items addressed are schedule logic, activity durations, resource availability, planned work processes and schedule impact from T&PRA identified risks. Schedule contingency is developed using a Monte Carlo technique with Primavera® (or equivalent) Risk Analysis software. Schedule impacts for contingency are developed with a Range of Durations analysis and a Probabilistic Branching modeling analysis. The Range of Durations analysis is developed using (Optimistic, Most Probable, and Pessimistic) duration impacts on each activity. The Probabilistic Branches used for analyses are defined from the risk registers developed in the T&PRA risk assessment within this ROAR. The results of the analysis added probable schedule duration required to achieve a 50% and 80% confidence of completion. Contingency activities are added to milestones at the end of the project to allow for risk impacts that would extend the completion date by the impacted duration. Total cost impact associated with schedule contingency is derived and contributes to the derivation of MR and contingency to account for the associated extension of time.

Technical and Programmatic Risk Assessment (T&PRA) Contingencies

T&PRA cost contingency is developed based on the residual risk impacts identified by the Team during the project risk assessment as documented in this ROAR. As described earlier, the team develops residual probability and best, most likely and worst case impact cost during the project risk assessment for each discrete risk. A cost probability distribution is developed for each risk using Crystal Ball® software. The software is then used to statistically combine the distributions through a Monte Carlo process (random sampling methodology) to produce the T&PRA cost contingency estimate. The intent of the T&PRA cost contingency estimate is to identify the amount of contingency funding for the Project at the 50% and 80% confidence levels.

Management Reserve (MR)

MR is defined as the cost and schedule contingency associated with Contractor risks (all risks except DOE-owned risks) calculated to achieve a 50% confidence level (CL).
Contingency

Contingency (or DOE owned Contingency) is defined as the difference between 50% and 80% contingency for Contractor risks, plus the full cost and schedule contingency to achieve a 80% CL for DOE owned risks.

5.2 Results

The calculated contingencies were as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>SRR MR</th>
<th>DOE Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>$6,859,523</td>
<td>$8,497,619</td>
</tr>
<tr>
<td>Schedule</td>
<td>$3,634,960</td>
<td>$1,590,663</td>
</tr>
<tr>
<td>T&PRA</td>
<td>$4,515,960</td>
<td>$12,651,500</td>
</tr>
<tr>
<td>Total</td>
<td>$15,010,443</td>
<td>$22,739,782</td>
</tr>
</tbody>
</table>

To achieve an 80% confidence level, the required schedule contingency was calculated to be 7 Months.

It must be noted that although the required 80% confidence level is attained by providing the TTP Project with fully funded T&PRA based contingencies, a risk remains (DOE-owned risk 016), that if realized in the worst case could result in the need for an active confinement ventilation system:

016 Implementation of DNFSB Recommendation 2004-2 Required

If this risk is realized, and the impact is the worst case, it would exceed the current risk-based T&PRA contingencies. Project management will focus on mitigating this risk as a priority early in the TTP Project life cycle to avoid the potential for re-baselining of the project should the worst case impact be realized.

5.3 Continuing Risk Management

As part of the ongoing project activities, risk statusing and tracking will be performed on the TTP Project. RHs will be included in the Project schedule and within the Project action item database. As new risks are identified by the Project Team they will be assessed and RHs
developed and implemented. Periodically these risks and updates to existing risks will be issued in a revision to this report. This process will continue for the life of the Project. These activities are detailed in Reference 9.

6.0 REFERENCES

7.0 APPENDICES

7.1 Assessable Elements
7.2 Risk Likelihood Table
7.3 Risk Consequences Table
7.4 Risk Topics
7.5 Safety in Design Topics
7.6 Risk Level Matrix
7.7 Risk Summary Table
7.8 Risk and Opportunity Assessment Forms
7.9 Riskometer
7.10 T&PRA Analysis
7.1: Assessable Elements

TTP Project

1.0 Processing (Operations)

1.1 Transfer Waste From T48 to FESR
1.2 Treat Waste
 1.2.1 Feed System
 1.2.2 DMEM
 1.2.3 CKR
 1.2.4 Off-gas
 1.2.5 Solids Handling
1.3 Transfer Product to Receiver Tank

2.0 Project

2.1 Utilities Systems Tie-ins
 2.1.1 Electrical
 2.1.2 Domestic Water
 2.1.3 Process Water
 2.1.4 Plant and Instrument Air
2.2 Support Systems
 2.2.1 Building 241-066 Structure
 2.2.2 HVAC
 2.2.3 Redundant Feed
 2.2.4 Steam Supply
 2.2.5 Oxygen Supply
 2.2.6 DCS
 2.2.7 Fire Protection
2.3 Waste Transfer Systems

3.0 General

4.0 Safety In Design
7.2: Risk Likelihood Table

<table>
<thead>
<tr>
<th>Likelihood of Occurrence</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Unlikely (<0 but <0.15)</td>
<td>Will most likely not occur in the life cycle of the project</td>
</tr>
<tr>
<td>Unlikely (≥0.15 but <0.45)</td>
<td>Will likely not occur in the life cycle of the project</td>
</tr>
<tr>
<td>Likely (≥0.45 but <0.75)</td>
<td>May occur sometime during the life cycle of the project</td>
</tr>
<tr>
<td>Very Likely (≥0.75)</td>
<td>Will likely occur sometime during the life cycle of the project</td>
</tr>
</tbody>
</table>
7.3: Risk Consequences Table

<table>
<thead>
<tr>
<th>Consequence of Occurrence</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| Negligible (<0.15) | Minimal consequences, unimportant.
Some potential transfer of money, but budget estimates not exceeded, up to $50K.
Negligible impact on project, slight potential development schedule change (≤ 1 week), compensated by available schedule float. |
| Marginal (0.15 - < 0.45) | Small, acceptable, reduction in modification project technical performance.
Cost estimates exceed budget > $50K to ≤ $250K.
Minor slip in schedule (> 1 week up to 2 weeks) with some potential adjustment to milestones required. |
| Significant (0.45 - < 0.75) | Significant degradation in modification/project technical performance.
Cost estimates exceed budget by > $250K to ≤ $1.5M.
Significant slip in schedule (> 2 weeks up to 2 months) resulting in milestone changes that may affect facility mission. |
| Critical (0.75 - < 0.9) | Technical goals of modification/process cannot be achieved.
Cost estimates seriously exceed budget by > $1.5M to ≥ $3M.
Excessive schedule slip (> 2 months up to 3 months) possibly affecting overall facility mission. |
| Crisis ≥ 0.9 | Modification cannot be completed within the constraints of existing schedule and budget.
Cost estimates unacceptably exceed budget by > $3M or more.
Schedule slip (>3 months); possibly causing loss of mission. |
7.4: Risk Topics

<table>
<thead>
<tr>
<th>Design</th>
<th>Resource/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Undefined, Incomplete, Unclear Functions or Reqs</td>
<td>• Material/Equipment Availability</td>
</tr>
<tr>
<td>• Complex Design Features</td>
<td>• Specialty Resources Required</td>
</tr>
<tr>
<td>• Numerous or Unclear Assumptions or Bases</td>
<td>• Existing Utilities Above and Underground</td>
</tr>
<tr>
<td>• Reliability</td>
<td>• Support Services Availability</td>
</tr>
<tr>
<td>• Inspectability</td>
<td>• Geological Conditions</td>
</tr>
<tr>
<td>• Maintainability</td>
<td>• Temporary Resources (Power, Lights, Water, etc.)</td>
</tr>
<tr>
<td>• Safety Class</td>
<td>• Resources Not Available</td>
</tr>
<tr>
<td>• Availability</td>
<td></td>
</tr>
<tr>
<td>• Errors and Omissions in Design</td>
<td>• Construction Complexities</td>
</tr>
<tr>
<td>• Regulatory & Environmental</td>
<td>• - Transportation</td>
</tr>
<tr>
<td>• Environmental Impact Statement Req’d. (EIS)</td>
<td>• - Critical Lifts</td>
</tr>
<tr>
<td>• Additional Releases</td>
<td>• - Population Density</td>
</tr>
<tr>
<td>• Undefined Disposal Methods</td>
<td>• Escorts</td>
</tr>
<tr>
<td>• Permitting</td>
<td>• Personnel Training & Qualifications</td>
</tr>
<tr>
<td>• State Inspections</td>
<td>• Tools, Equipment Controls & Availability</td>
</tr>
<tr>
<td>• Order Compliance</td>
<td>• Experience with system/component (design, operations, maintenance)</td>
</tr>
<tr>
<td>• Regulatory Oversight</td>
<td>• Work Force Logistics</td>
</tr>
<tr>
<td>• Safeguards & Security</td>
<td>• - Operations Support</td>
</tr>
<tr>
<td>Category I nuclear materials</td>
<td>• - Health Physics</td>
</tr>
<tr>
<td>• Classified process / information</td>
<td>• - Facility Support</td>
</tr>
<tr>
<td>• Technology</td>
<td>• - Facility Maintenance Centralized Maintenance</td>
</tr>
<tr>
<td>• New Technology</td>
<td>• - Construction Support Post Modifications</td>
</tr>
<tr>
<td>• Existing Technology Modified</td>
<td></td>
</tr>
<tr>
<td>• New Application of Existing Technology</td>
<td>• Training</td>
</tr>
<tr>
<td>• Unknown or Unclear Technology</td>
<td>• Research and Development Support</td>
</tr>
<tr>
<td>• Procurement</td>
<td>• Multiple Project/Facility Interface</td>
</tr>
<tr>
<td>• Procurement Strategy</td>
<td>• Facility Work Control Priorities</td>
</tr>
<tr>
<td>• First-use Subcontractor/Vendor</td>
<td>• Lockout Support</td>
</tr>
<tr>
<td>• Vendor Support</td>
<td></td>
</tr>
<tr>
<td>• Construction Strategy</td>
<td>• Safety</td>
</tr>
<tr>
<td>• Construction</td>
<td>• Criticality Potential</td>
</tr>
<tr>
<td>• Maintenance</td>
<td>• Fire Watch</td>
</tr>
<tr>
<td>• Operability</td>
<td>• Exposure Contamination Potential</td>
</tr>
<tr>
<td>• Facility Startup</td>
<td>• Authorization Basis Impact</td>
</tr>
<tr>
<td>• System Startup (Subcontractor or PE&CD)</td>
<td>• Hazardous Material Involved</td>
</tr>
<tr>
<td>• Testing</td>
<td>• Emergency Preparedness</td>
</tr>
<tr>
<td>• Construction</td>
<td>• Safeguards & Security</td>
</tr>
<tr>
<td>• Maintenance</td>
<td>• Confinement Strategies</td>
</tr>
<tr>
<td>• Operability</td>
<td>• Management</td>
</tr>
<tr>
<td>• Facility Startup</td>
<td>• Funding uncertainties</td>
</tr>
<tr>
<td>• System Startup (Subcontractor or PE&CD)</td>
<td>• Stakeholders Program Strategy Changes</td>
</tr>
<tr>
<td>• Errors and Omissions in Estimates</td>
<td>• Errors and Omissions in Estimates</td>
</tr>
<tr>
<td>• Fast track/critical need</td>
<td>• Fast track/critical need</td>
</tr>
<tr>
<td>• Infrastructure influence</td>
<td>• Infrastructure influence</td>
</tr>
</tbody>
</table>
SAVANNAH RIVER REMEDIATION
LIQUID WASTE DISPOSITION PROJECTS
TANK 48 TTP PROJECT
RISK ANALYSIS REPORT

Safety/ISMS
- Established operating practices
- Established, proven operating procedures
- Requires changes to AB documents or new USQ
- Unique operating logistics required
- Additional operations personnel required
- New TSR) limits or surveillance’s
- Limited access/egress
- Complex emergency/off-normal operational steps
- Equipment reliability

Security
- New security systems required
- New security practices required
- Additional security personnel required
- Revised MC&A requirements

Mission
- Affect other facility/site missions
- Interfacing with off-site organizations required
- Shipment to off-site locations required
- Operation susceptibility to external intervention

Integration
- Work included in division/area/facility master schedule
- Design/construction schedule conflicts
- Other site division involvement

Waste Management
- New waste streams generated
- New waste management practices being implemented
- Additional quantities of waste being generated

Interfaces
- Multiple Agencies, Contractors
- Special Work Control/Work Auth. Procedures
- Operating SSCs Including Testing
- Multiple Customers
- Co-Occupancy
- Outage Requirements
- Multiple systems
- Radiological Conditions (Current and Future)
 - Contamination
 - Radiation
- Multiple Projects
- Proximity to Safety Class Systems

Operation
- Non-routine and/or complex operation
- Routine operational stoppages required
- Analytical sampling required during operations

Engineering/R&D
- Newly deployed technology
- Transient technology, replacement component differ

Infrastructure
- Equipment operating beyond intended/useful life
- Support facility reliability (steam, waste, etc.)
- Spare parts availability

Facility Capability
- Additional capital funded/project requirements
- Modification to existing project scope
7.5: Safety in Design Topics

<table>
<thead>
<tr>
<th>Functional Areas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Technology</td>
</tr>
<tr>
<td>Undefined, Incomplete, Unclear Process or Safety</td>
<td>New Technology application or new application or existing technology</td>
</tr>
<tr>
<td>Functions or Requirements</td>
<td>hazards and upset conditions may not be</td>
</tr>
<tr>
<td></td>
<td>well understood</td>
</tr>
<tr>
<td></td>
<td>material form may be one not previously</td>
</tr>
<tr>
<td></td>
<td>studied for Airborne Release Fraction (ARF)</td>
</tr>
<tr>
<td></td>
<td>toxicological effects may not have sound</td>
</tr>
<tr>
<td></td>
<td>basis</td>
</tr>
<tr>
<td>Complex Design Features</td>
<td>Unknown or undecided technology</td>
</tr>
<tr>
<td></td>
<td>Potential for different materials at risk (MAR) should be assessed with resultant impact to NPH categorization and SSC functional classification</td>
</tr>
<tr>
<td></td>
<td>Potential for additional or exacerbated accident scenarios</td>
</tr>
<tr>
<td>Assumptions on key utility interfaces</td>
<td>Scale-up of bench scale technology or process or technology application maturity</td>
</tr>
<tr>
<td></td>
<td>Production quantities could introduce unknowns in hazard behavior or material interactions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Basis Threat requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential for changes affecting seismic design or hazards analysis</td>
</tr>
<tr>
<td></td>
<td>Potential for added capacity (MAR and SSC functional classification impact)</td>
</tr>
<tr>
<td></td>
<td>Potential for addition of significant mass to structure affecting seismic analysis</td>
</tr>
<tr>
<td></td>
<td>Potential for impacting confinement ventilation system</td>
</tr>
<tr>
<td>Safety Class SSC selection confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management judgments related to selection of borderline SSC classifications should be identified</td>
</tr>
<tr>
<td></td>
<td>Assumptions critical to consequence results with potential for change (e.g., ARF)</td>
</tr>
<tr>
<td>Assumptions regarding production objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increases in production objectives could affect MAR, NPH categorization, and/or SSC functional classification</td>
</tr>
<tr>
<td>Errors and Omissions in Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential for impact to MAR, NPH categorization, and/or SSC functional classification</td>
</tr>
<tr>
<td>Functional Areas</td>
<td>Field Quality Control</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Seismic design margin</td>
<td>Field installation/Quality Control errors during structure construction can result in</td>
</tr>
<tr>
<td>- 10-year site hazard reevaluation (e.g., change in seismic hazard curve) requirement may impact NP design basis for long-term design/construct projects</td>
<td>design changes to protect seismic basis, separation requirements, etc.</td>
</tr>
<tr>
<td>Criticality Design Criteria</td>
<td></td>
</tr>
<tr>
<td>- Ill-defined criteria can result in potential miscommunication between design disciplines and criticality safety</td>
<td></td>
</tr>
<tr>
<td>Fire Protection</td>
<td></td>
</tr>
<tr>
<td>- Failure to identify and comply with design requirements of codes, standards, and directives</td>
<td></td>
</tr>
<tr>
<td>- Failure to integrate FHA with facility hazards analysis</td>
<td></td>
</tr>
<tr>
<td>- Rigorous fire hazards is necessary to define facility fire mitigation design basis</td>
<td></td>
</tr>
</tbody>
</table>
7.6: Risk Level Matrix

<table>
<thead>
<tr>
<th>PRO</th>
<th>RISK LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Likely</td>
<td>Low</td>
</tr>
<tr>
<td>Likely</td>
<td>Low</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Low</td>
</tr>
<tr>
<td>Very Unlikely</td>
<td>Low</td>
</tr>
<tr>
<td>Non-Credible</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
</tr>
</tbody>
</table>
7.7: Risk and Opportunity Summary Table

<table>
<thead>
<tr>
<th>Risk ID</th>
<th>Risk Title</th>
<th>Likelihood</th>
<th>Consequence</th>
<th>Risk Level (Initial)</th>
<th>Handling Strategy</th>
<th>Description</th>
<th>Residual Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Funding Availability</td>
<td>Likely</td>
<td>N/A</td>
<td>N/A</td>
<td>Mitigate</td>
<td>Keep Senior Management informed about project needs/progress. Ensure required funding is approved and if funding becomes unavailable, effect a baseline change proposal to project.</td>
<td>N/A</td>
</tr>
<tr>
<td>002</td>
<td>Interfaces with Other Facilities and Projects</td>
<td>Very Likely</td>
<td>Significant</td>
<td>High</td>
<td>Mitigate</td>
<td>Keep H-Tank Farm Facility Project Owners & Managers informed about project needs/progress. Maintain integrated project schedule with appropriate logic ties between project & facility activities.</td>
<td>Moderate</td>
</tr>
<tr>
<td>003</td>
<td>Sampling and Analysis Turnaround Impacts Production</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Develop Sample & Analytical Plans well in advance of actual operations including a strategy where a sample of every transfer is not required, i.e. take weekly or monthly samples similar to what is done for the evaporator overheads. Ensure Lab back-up instrumentation is available in case of equipment failure. Develop a contingency plan if analytical results are not available, i.e. tighten the acceptable tolerance of the latest sample to verify results and to justify continued operation. This risk however would occur during hot operations, therefore it is an operational vulnerability and does not have any residual risk to the project.</td>
<td>N/A</td>
</tr>
<tr>
<td>004</td>
<td>Accessibility for Construction Work</td>
<td>Very Likely</td>
<td>Significant</td>
<td>High</td>
<td>Mitigate</td>
<td>Coordinate work with operations and other projects through participation in facility Work Window Lock-ins, 8 Week Lookaheads (T8s), and Plan of the Days (PODs). When activities are locked in, ensure critical resources (i.e. rigging, radcon, IH, etc.) are onboard and ready to support.</td>
<td>Moderate</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>007</td>
<td>DOE Directed Changes to Technical Requirements</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Accept</td>
<td>Changes to the Technical baseline imposed by DOE would be a change in project scope and a BCP would be generated to move funding from DOE contingency.</td>
<td>High</td>
</tr>
<tr>
<td>008</td>
<td>Availability of Construction Equipment</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Accept</td>
<td>This risk is accepted based on priority being requested for on-site crane. Although priority for crane usage is requested, a higher priority could still "bump" this project.</td>
<td>Moderate</td>
</tr>
<tr>
<td>009</td>
<td>Readiness/ORR Assessment Findings</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Project Team develop and perform detailed management checklist prior to beginning RA. Continued engagement of DOE, Operations and Safety organizations in the system design reviews and testing activities. DOE Operations and Safety organizations to participate in test activities conducted before the DOE ORR. Engage the DOE ORR Team prior to the SAT to enable the team to become familiar with the systems and operations.</td>
<td>Low</td>
</tr>
<tr>
<td>011</td>
<td>Unsafe Conditions Discovered at Turnover</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Operations, Safety, Engineering, Industrial Hygiene, Construction, QA and Maintenance to participate in design reviews and monthly walkdowns.</td>
<td>Moderate</td>
</tr>
<tr>
<td>012</td>
<td>Stakeholder Participation</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Develop communication plan for involving stakeholders. Keep Stakeholders/Senior Management informed of R&D results. If stakeholders do impose additional design/operational/research/testing requirements on the project a BCP will be developed to obtain additional funding from DOE contingency. As an ongoing part of project execution the Integrated Project Team will be utilized to communicate information to Senior Management and determine actions for additional stakeholder needs as they develop.</td>
<td>Moderate</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>013</td>
<td>Safety Basis not Accepted By DOE</td>
<td>Very Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Ensure DOE involvement during development of the Safety Design Strategy (SDS) to avoid last minute surprises. DOE will participate in the CHA meetings, SIRC and Safety Design Integration Team meetings. SRR will obtain DOE approval of interim documents such as the SDS, Conceptual Safety Design Report, Preliminary Safety Design Report and Preliminary Documented Safety Analysis. DOE has established a Technical Authority Board to review these interim documents.</td>
<td>Low</td>
</tr>
<tr>
<td>014</td>
<td>Resources Not Available</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Establish project baselines and key contract milestones. Maintain timely funding authorizations and accurate resource forecasts for all support management organizations.</td>
<td>Moderate</td>
</tr>
<tr>
<td>016</td>
<td>Implementation of DNFSB Recommendation 2004-2 Required</td>
<td>Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Accept</td>
<td>The TTP Project Design strategy complies with current DOE orders and site procedures. There are no additional handling strategies that can be applied.</td>
<td>High</td>
</tr>
<tr>
<td>019</td>
<td>Addition of the GAC to Design</td>
<td>Very Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Complete analysis of Hazen test data and flowsheet development and work with environmental to determine that the GAC bed indeed is not required in sufficient time to minimize schedule impact.</td>
<td>Moderate</td>
</tr>
<tr>
<td>020</td>
<td>Analysis of 241-96H Structure Shows Not-Qualified for II/II Concerns</td>
<td>Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Avoid</td>
<td>Perform the II/II Analysis during preliminary design to identify impacts prior to baselining the project. Design project to II/II criteria.</td>
<td>None</td>
</tr>
<tr>
<td>022</td>
<td>Interfaces With New Contractor Impacts Project</td>
<td>Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Ensure early involvement of subcontractor in preliminary design. Expedite preliminary design.</td>
<td>High</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>023</td>
<td>Design Assumptions and Design Uncertainties Result In Rework</td>
<td>Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Determine the need for new electrical substation. Develop and issue a viable automation and controls strategy. Evaluate off-gas composition and potential personnel exposure.</td>
<td>Moderate</td>
</tr>
<tr>
<td>024</td>
<td>Insufficient Maintainability Provided</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Mitigate</td>
<td>Have Maintenance, Ops and Rad Con involved in the design to ID and resolve issues during the design of the skid.</td>
<td>Moderate</td>
</tr>
<tr>
<td>027</td>
<td>Availability of Consumables</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Perform identification of critical spares/resources. Set up parts in stores. Where practical, consumables critical to this project and with lead times greater than one week shall be set up in site stores.</td>
<td>Low</td>
</tr>
<tr>
<td>028</td>
<td>Waste Feed Nozzle Deposits</td>
<td>Likely</td>
<td>N/A</td>
<td>N/A</td>
<td>Mitigate</td>
<td>Perform ESTD testing with Tank 48 simulant. Engineering Scaled Testing Lessons Learned will be incorporated into clean in place design. Inspect DMR feed nozzle for deposits after ESTD testing. This risk is an operational vulnerability.</td>
<td>N/A</td>
</tr>
<tr>
<td>029</td>
<td>Scale-up of FBSR Process Encounters Problems</td>
<td>Unlikely</td>
<td>N/A</td>
<td>N/A</td>
<td>Avoid</td>
<td>The Hazen tests will validate design flow rates of Tank 48 simulate feed. Expected flow rate will be based on a smaller 15” DMR bed unit. The design for the Tank 48 unit will be approximately 26” bed DMR. The inability of the scaled-up FBSR to meet throughput requirements is not considered a risk to the project, however this is an issue that will impact the LLWDSP. Use the Hazen test results to validate design flow rates of Tank 48 simulate feed; perform elutriation and material & energy balance calculations; and perform computational fluid dynamics (CFD) modeling. This risk is an operational vulnerability that will be avoided.</td>
<td>None</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>033</td>
<td>Long Lead Procurement is Denied or Delayed</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Project schedule includes request of early approvals of long lead procurements in order to obtain early DOE agreement on strategy. If this risk were to be realized, a BCP will be developed to obtain funding from DOE contingency to compensate for realized schedule impacts.</td>
<td>High</td>
</tr>
<tr>
<td>034</td>
<td>Waste Feed Line Plugs</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Avoid</td>
<td>Thor Treatment Technologies (TTT) to assess potential for DMR feed nozzle plugging based on potential particle size limitations associated with the process and specify proposal for risk potential mitigation/elimination.</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>Availability Cannot be Achieved</td>
<td>Unlikely</td>
<td>Critical</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Vendor is required to perform a RAMI analysis on the system. Have Vendor engineers on hand during vendor testing, startup and cold runs. This is not considered a risk to the project, as risk during startup has been avoided, however this is an operational vulnerability that could impact the System Plan.</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>Engineered Equipment (Modules/Skids) Deliveries do not Support Project Schedule</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Mitigate</td>
<td>Have an expeditor assigned to the Project Team to expedite and track procurements.</td>
<td>Moderate</td>
</tr>
<tr>
<td>046</td>
<td>Material Deposits Build up in Process Equipment During Operation</td>
<td>Likely</td>
<td>N/A</td>
<td></td>
<td>Mitigate</td>
<td>Analyze material samples collected from Hazen testing. Inspect DMR for build-up during all testing and develop ops and maintenance procedures for preventing build-up or cleaning during radioactive operation. This risk will not impact the project, however will remain as a potential operational vulnerability.</td>
<td></td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>050</td>
<td>Tank Farm Equipment Failure</td>
<td>Unlikely</td>
<td>N/A</td>
<td>N/A</td>
<td>Accept</td>
<td>This risk is accepted as handling of this risk is presently being performed by Tank Farm operations by establishing system health evaluation of key systems that can impact major processing activities. Implementing the requirements of the evaluation e.g. ensuring adequate spare parts/equipment are identified and on hand is being performed to support facility operations. Completion of this program risk handling strategy will bring the probability and consequence of equipment failure to levels that are acceptable, no longer considered as a risk and have no impact to the Project. It may remain an operational vulnerability.</td>
<td>N/A</td>
</tr>
<tr>
<td>056</td>
<td>Facility Support System Capacity/Life</td>
<td>Unlikely</td>
<td>N/A</td>
<td>N/A</td>
<td>Mitigate</td>
<td>Determine the utility needs earlier during preliminary design and verify their availability. Have maintenance and Ops verify that the utilities are in good working order during the design phase. Schedule impact avoided. Ensure the process design can handle anticipated support system unplanned interruptions without undue consequences by either prevention e.g. safe shutdown, stand by mode, etc.) or by including means to recover (e.g. flushing). TTP Project will ensure that site utilities are have adequate capacity, however, the continued addition of other projects and the age of the utility systems will remain an operational vulnerability.</td>
<td>N/A</td>
</tr>
<tr>
<td>057</td>
<td>Integration of Multiple Internal Technical Agencies</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Mitigate</td>
<td>Assign a PEM to coordinate this effort and have regular Engineering Meetings with the total engineering team.</td>
<td>Low</td>
</tr>
<tr>
<td>058</td>
<td>Multiple Design Input Documents</td>
<td>Very Unlikely</td>
<td>Marginal</td>
<td>Low</td>
<td>Mitigate</td>
<td>Assign a PEM to coordinate this effort and have regular Engineering Meetings with the total engineering team.</td>
<td>Low</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>059</td>
<td>Undefined Disposal Method for Waste Generated During Operations and Eventual Standby/Lay-up</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Avoid</td>
<td>Identify disposal path upfront in preparation for filter, DMR/CRR bed material/fouled components replacement.</td>
<td>None</td>
</tr>
<tr>
<td>061</td>
<td>Facility Space and Weight Limitations</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Asbuilt available space within the building. Make the space availability/weight limits a requirement for the FBSR Vendor.</td>
<td>High</td>
</tr>
<tr>
<td>062</td>
<td>Project Strategy Does Not Support Tank 48 Return to Service Need</td>
<td>Very Likely</td>
<td>N/A</td>
<td>N/A</td>
<td>Accept</td>
<td>If Tank 48 can not be returned to service to support the System Plan, future Tank Closure commitments may not be achieved. This is not a risk for the Project, however it is an issue to be resolved by the LWO Planning Group. (Reference PBS-SR-0014, Risk 184).</td>
<td>N/A</td>
</tr>
<tr>
<td>063</td>
<td>FBSR Equipment Transportation Requires Additional Precautions</td>
<td>Very Unlikely</td>
<td>Significant</td>
<td>Low</td>
<td>Mitigate</td>
<td>Plan up front in the design of the skids and coordinate with the Vendor to ensure special vehicles are available. Perform receipt inspection.</td>
<td>Low</td>
</tr>
<tr>
<td>064</td>
<td>Multiple External Interfaces</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Mitigate</td>
<td>Schedule early approval of long lead procurements to ensure critical vendor information is available in a timely fashion. Integrate project activities into facility schedule. Establish project milestones to manage schedule float and visibility of project priorities.</td>
<td>Low</td>
</tr>
<tr>
<td>066</td>
<td>Emergent Startup Issues</td>
<td>Very Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Incorporate lessons learned. Ensure sufficient time is allotted for operator/startup training.</td>
<td>Moderate</td>
</tr>
<tr>
<td>069</td>
<td>Facility Services Design Complexity</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Specify and/or coordinate the tie-in point in the specification or during the review and approval of the Vendor design.</td>
<td>Low</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>070</td>
<td>Persistent Contamination Control Issues</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Design equipment and facility for ease of decontamination. During cold runs, investigate potential contamination pathways and perform NDE per appropriate code (e.g. Hydrostatic testing, weld UT/MT/PT or rad inspection.</td>
<td>Low</td>
</tr>
<tr>
<td>072</td>
<td>Module Handling and Installation</td>
<td>Likely</td>
<td>Marginal</td>
<td>Moderate</td>
<td>Avoid</td>
<td>Ensure requirements are placed in procurement specification for handling equipment to be provided by the vendor. Review vendor design and lifting procedures. Review model. Perform constructability reviews.</td>
<td>None</td>
</tr>
<tr>
<td>073</td>
<td>Secondary Containment Required For Off-Gas and Secondary Confinement</td>
<td>Very Unlikely</td>
<td>Significant</td>
<td>Low</td>
<td>Avoid</td>
<td>Design ductwork as Level 5.</td>
<td>None</td>
</tr>
<tr>
<td>075</td>
<td>Design/Operational Life Is Inadequate</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Develop procurement specification to ensure a robust design of major equipment. During startup testing, focus on identification of adverse indications that may reduce life expectancy and correct whenever feasible. Perform a RAMI analysis. Even with a robust design and minimization of adverse operational impacts to the system, an operational vulnerability remains that a failure could occur by operating the system outside of the planned operational life. This does not impact the project and the vulnerability has been accepted by operations.</td>
<td>N/A</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>076</td>
<td>Aggressive Post Installation Testing Schedule</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>PS SSCs require a commensurate level of QA, these activities will normally include QA inspection, witnessing vendor validation/component testing/critical installation points, ensuring lessons learned are documented, reviewing and approving vendors QA, assuring SOW Engineering documents/inspection and examination procedures/startup procedures/SOW testing plans and procedures are statused 1 or 5. Additionally: Assure that the validation test lessons learned are incorporated into the FBSR design; develop and issue project specific QA Plan. Assign startup engineers/operators to Idaho startup.</td>
<td>Low</td>
</tr>
<tr>
<td>082</td>
<td>Organic Carries Over to Product Storage Tank</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Avoid</td>
<td>Provide a design constraint to the vendor at initial design for preventing organics from entering the PDT. Ensure the feature meets our needs during design review process. Provide sampling recycle capability.</td>
<td>None</td>
</tr>
<tr>
<td>083</td>
<td>DWPF Processing Impacted by FBSR Product</td>
<td>Likely</td>
<td>N/A</td>
<td>N/A</td>
<td>Mitigate</td>
<td>The TTP Project will perform the following to assist mitigation of Program impacts: evaluate process for FBSR output in the final product stream; develop modeling for sludge batch with FBSR output; and require the vendor to perform elutriation and carryover calculations. (Reference PBS-SR-0014 Risks 034, 048, 083, 120 and 145).</td>
<td>N/A</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>085</td>
<td>Maintenance Requires Remote Operations</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>During design, assure all items requiring maintenance are designed and located for easy access, removal and replacement to reduce maintenance time. Vendor is required to provide input to shielding calc. Where possible provide shielding portals for access and rigging/hoisting points that take advantage of available distance and shielding. Determine if any equipment bails, hoist attachments, or camera views would be beneficial for some equipment maintenance activities. SRR operations and maintenance will be engaged with vendor in developing design features to allow cleaning to minimize dose.</td>
<td>High</td>
</tr>
<tr>
<td>087</td>
<td>High Silica Content Creates a Processing Problem at 2H Evaporator</td>
<td>Likely</td>
<td>N/A</td>
<td>N/A</td>
<td>Mitigate</td>
<td>The TTP Project will perform the following to assist mitigation of Program impacts: perform evaluation to determine soluble silica expected in the Tank Farm receipt tank; evaluate impact to 2H evaporator system and determine is additional action is required to reduce/remove silica. (Reference PBS-SR-0014 Risks 116 and 367).</td>
<td>N/A</td>
</tr>
<tr>
<td>093</td>
<td>Accident Analysis Determines Additional Safety Controls are Required</td>
<td>Unlikely</td>
<td>Critical</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Specify materials as Quality Level 2 (equivalent to SS) during initial procurement to allow early procurement and avoid schedule delays. Pursue testing of DMR and PSF coal/product for combustion.</td>
<td>Moderate</td>
</tr>
<tr>
<td>095</td>
<td>Accumulation of Solids in WFT, PDT, and/or PST</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Avoid</td>
<td>Use mixing/agitation to suspend the insoluble and designing transfer systems capable of transferring slurried solutions will avoid this risk.</td>
<td>None</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>098</td>
<td>Sampling System Does not Perform as Designed</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Avoid</td>
<td>Revise the current Sampling Strategy for the FBSR system (Ref. LWO-SPT-2008-00116) to confirm sampling needs for the FBSR system and tank farm receipt tank early in the preliminary design phase. Prepare a Sampling Plan, obtain concurrence from operations and incorporate into the projects TR&C. During the sampling design development ensure buy in from maintenance and operations. Risk is avoided.</td>
<td>None</td>
</tr>
<tr>
<td>100</td>
<td>WFT and PST Cooling is Inadequate</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Avoid</td>
<td>Perform analysis during preliminary design to confirm adequacy of tank cooling capacity and cooling control system.</td>
<td>None</td>
</tr>
<tr>
<td>102</td>
<td>DWPF Particle Size Requirements Not Met</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Refine data on expected bauxite concentration, perform additional testing and develop a path forward early in project.</td>
<td>High</td>
</tr>
<tr>
<td>103</td>
<td>Doorstops Are Not Available As Needed to Support Sampling Activities</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Mitigate</td>
<td>Perform identification of spare doorstops at SRS. Perform radiological dose estimate/calculation to determine shielding requirements for samples. Determine if the doorstops identified meet the radiological requirements. In parallel initiate Procurement Process to purchase acceptable spares identified from SRNS and initiate Procurement Process for fabrication of remainder of doorstops.</td>
<td>Moderate</td>
</tr>
<tr>
<td>104</td>
<td>SCDHEC Permitting Engineering Resources Are Not Available</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Actively engage SCDHEC in permitting process through information meetings, site visits, etc. Ensure local SCDHEC office is involved in discussions with SCDHEC permit engineer in Columbia. Ensure all branches of SCDHEC are involved during permit discussions.</td>
<td>Moderate</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>108</td>
<td>SCDHEC IWT Construction Permit Issuance Is Delayed</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Develop input data and permit package to ensure it will comply the SCDHEC requirements for a construction permit application.</td>
<td>High</td>
</tr>
<tr>
<td>109</td>
<td>Non-Rad (SCDHEC-BAQ (Bureau of Air Quality) Construction Permit is Delayed</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Develop data and perform calculation to determine emission levels of unit in sufficient time to incorporate mitigating modifications in design to ensure permit thresholds will not be exceeded.</td>
<td>Low</td>
</tr>
<tr>
<td>111</td>
<td>Design Changes are Required to Achieve Performance Goals</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Mitigate</td>
<td>Request information from TTT on process upsets and impacts to operational recovery. Perform evaluations of site equipment reliability and provide recommendations to management. The residual risk would be an operational vulnerability if the controls/redundancies either cannot be provided or do not fully resolve the problem.</td>
<td>N/A</td>
</tr>
<tr>
<td>112</td>
<td>During Startup Additional Samples Are Required</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>Evaluate statistically the need for more than 7 samples based on previous operational experience with MCU. Develop additional capabilities in F-Area Lab.</td>
<td>Moderate</td>
</tr>
<tr>
<td>117</td>
<td>Additional Project Reviews are Required</td>
<td>Likely</td>
<td>Critical</td>
<td>High</td>
<td>Accept</td>
<td>There is no effective handling strategy that can be employed to mitigate this risk. It is outside the control of the Project Team. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.</td>
<td>High</td>
</tr>
<tr>
<td>118</td>
<td>Legacy Costs Increase</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Accept</td>
<td>There are no strategies to control the fluctuations in Legacy costs. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.</td>
<td>High</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>119</td>
<td>Materials Pricing Increases Vendor Costs</td>
<td>Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>TTT to identify materials of construction early and seek early SRR approval to enable procurement. A LLP Plan is being developed by TTT to allow early ordering of materials. TTT will continue to monitor material availability/pricing and make adjustments to estimates as necessary.</td>
<td>Moderate</td>
</tr>
<tr>
<td>121</td>
<td>DOE do not Accept Procurement Strategy</td>
<td>Unlikely</td>
<td>Crisis</td>
<td>High</td>
<td>Mitigate</td>
<td>SRR will meet regularly with DOE and provide update on any changes to procurement strategy.</td>
<td>High</td>
</tr>
<tr>
<td>122</td>
<td>Testing of Auger Grinder Indicates Major Design Rework is Required</td>
<td>Likely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>TTT to evaluate the Tank 48 Phase 1 and 3 test results relative to Auger Grinder performance and incorporate lessons learned into design. TTT to monitor test results from IWUT Auger Grinder test and if necessary design modifications and use lessons learned in the Tank 48 Auger Grinder Design.</td>
<td>Moderate</td>
</tr>
<tr>
<td>123</td>
<td>Design Comment Resolution Delays Design Completion</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Provide resident personnel to socialize issues with TTT early and resolve prior to reviews. SRR to discuss comments with TTT to ensure all are clearly understood before disposition begins.</td>
<td>Low</td>
</tr>
<tr>
<td>124</td>
<td>Process Optimization Continues After Flowsheets are Finalized</td>
<td>Likely</td>
<td>Crisis</td>
<td>High</td>
<td>Avoid</td>
<td>Assign a PEM responsible for approval of flowsheet changes and coordination with design. Install and exercise change control over the TTT Process Flowsheet.</td>
<td>None</td>
</tr>
<tr>
<td>125</td>
<td>Numbering System Convention Changes</td>
<td>Unlikely</td>
<td>Significant</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>Develop and deploy a change control process.</td>
<td>Moderate</td>
</tr>
<tr>
<td>Risk ID</td>
<td>Risk Title</td>
<td>Likelihood</td>
<td>Consequence</td>
<td>Risk Level (Initial)</td>
<td>Handling Strategy</td>
<td>Description</td>
<td>Residual Risk Level</td>
</tr>
</tbody>
</table>
|--------|--|------------|-------------|---------------------|------------------|--Adam JMcK
| 126 | Vendor Underestimates Complexity of SRS SOW Requirements | Likely | Crisis | High | Mitigate | Vendors to evaluate high potential requirements and communicate impacts to SRR. Use RFI's and SDD's to communicate issues and resolution. Develop and deploy change control. | High |
| 127 | Flow-down Requirements Imposed on Sub-vendors Impede Lower-tier Procurement Process | Likely | Significant | Moderate | Mitigate | Primary vendor to: develop a contract deliverables list to accurately identify documents required to be submitted or generated at the time of submittal; review design specifications to assure only "Code Required" and "Contract Required" documents are listed, minimizing unnecessary submittals; assure all submittal requirements are clearly understood by having Fabrication Manager, Engineering Manager and ESH & Q Manager meet with sub-vendor; ensure Procurement Manager, Engineering Manager and ESH & Q Manager review purchasing documents to assure submittals are properly included. | Moderate |
| 128 | Refractory Damaged During Transportation | Likely | Critical | High | Mitigate | Ensure the refractory plan includes specific and adequate transportation precautions against damage to the refractory. | Moderate |
7.8: Risk and Opportunity Assessment Forms

Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 001</th>
<th>Revision: 02</th>
<th>Last Date Evaluated: 4-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Event Title: Funding Availability
Type: Risk
Category: External
Assess. Element: 3.0
Title: General
Responsible Org: SRR-PM - Project Manager
Contact: Jon Lunn
Date Identified: 12-Oct-08

Statement of Event: Project must be adequately funded to be successful. Funding falls short of project needs. Project cannot be completed within baseline schedule.

Likelihood: Likely
Basis: Funding shortfalls occur with regularity.

Consequence / Benefit: N/A
Basis: Schedule delay up to and including demobilization and placing project on hold.

Most Significant Cost Impact ($K): N/A
Most Significant Schedule Impact: N/A

Level:
Event Trigger: Open - Currently open / Close - "CD-4 DOE Approval" (WH4CD-106)

Handling Strategy: Mitigate
Description: Keep Senior Management informed about project needs/progress. Ensure required funding is approved and if funding becomes unavailable, effect a baseline change proposal to project.

Handling Strategy Action Items:
001.1 Keep Senior Management informed about project needs/progress. , , Jon Lunn,
001.2 Ensure required funding is approved and if funding becomes unavailable, effect a baseline change proposal to project. , , Jon Lunn,

HS Implementation Cost ($K): 0
Basis: Cost will be within the Project baseline for PM activities.

HS Implementation Schedule: Ongoing
Basis: This activity will be performed for the entire length of the Project.

Other Handling Strategies:

Statement of Residual Risk: As a BCP will be initiated upon realization of this risk, no residual risk to the project exists.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Consequence</th>
<th>Basis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Residual Impact Basis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
</table>

| Residual Schedule Impact | |

Impacted Scope of Work:

Evaluation Comments: There will be no residual risk to the project as a BCP will be developed however, this risk could impact the LWDPP if realized. This risk should be reviewed as part of the LWDPP risk assessment activities.
Risk / Opportunity Assessment Form

ID Number: 002
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Interfaces with Other Facilities and Projects
Type: Risk
Assess. Element: 3.0

Responsible Org: SRR-PM - Project Manager
Title: General

Contact: Jon Lunn
Date Identified: 12-Oct-06

Statement of Event: This project will interact with other facilities and projects during construction, startup testing and operation. Priorities conflict with other facilities and projects (e.g. ARP process equipment is not ready when needed by the project). Due to conflicts, Project is delayed.

Likelihood: Very Likely
Basis: Projects and facilities that interact with this project are subject to conflicting priorities

Consequence / Benefit: Significant
Basis: Cost increases and schedule delays

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 4 Wks

Level: High
Event Trigger: This risk may occur after issuance of the first final design package and may remain as an operational vulnerability after turnover.

Handling Strategy: Mitigate
Description: Keep H-Tank Farm Facility Project Owners & Managers informed about project needs/progress. Maintain integrated project schedule with appropriate logic ties between project & facility activities.

Handling Strategy Action Items:

- 002-1 Keep H-Tank Farm Facility Project Owners & Managers informed about project needs/progress, , , Jon Lunn,
- 002-3 Maintain integrated project schedule with appropriate logic ties between project & facility, , , Jon Lunn,

HS Implementation Cost ($K): 0
Basis: Development of an integrated detailed project schedule is within the baseline.

HS Implementation Schedule: Ongoing
Basis: Development and maintenance of a detailed project schedule is an ongoing task for the life of the Project.

Other Handling Strategies:

Statement of Residual Risk: Unanticipated and/or changing priorities in HTF operations still occurs.

Residual Likelihood: Likely
Basis: Unanticipated and/or changing priorities in HTF operations is not uncommon and can still occur.

Residual Consequence: Marginal
Basis: Most likely case of working O/T to make up some impact to critical path, but being unable to mitigate 1 week delay.

Residual Risk Level: Moderate

Residual Cost Impact ($K):

- **Best Case:** 0
- **Most Likely:** 50
- **Worst Case:** 50

Residual Schedule Impact:

- **1 Wk**
- **2 Wks**

Residual Impact Basis:
- **Worst Case:** Plan on O/T to make up some impact to critical path, but 2 weeks delay remains.
- **Most Likely Case:** Plan on O/T to make up some impact to critical path, but 1 week delay remains.
- **Best Case:** Priority changes occur but do not impact critical path

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Action item 2 deleted as the strategy for transfers to and from Tank 48 and 43 has been changed.
Risk / Opportunity Assessment Form

ID Number: 003
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title</th>
<th>Sampling and Analysis Turnaround Impacts Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Risk</td>
</tr>
<tr>
<td></td>
<td>External Programmatic</td>
</tr>
<tr>
<td>Category:</td>
<td>SRR</td>
</tr>
<tr>
<td>Assess. Element:</td>
<td>1.0</td>
</tr>
<tr>
<td>Title:</td>
<td>Processing</td>
</tr>
</tbody>
</table>

Event Title: Processing
Basis: Likely
Likelihood: Parallel site (and LWD) projects may place competing demands on SRNL Analytical Staff. Key equipment is unique and seldom used. Potential for equipment failure or competing resource needs is high.

Consequence / Benefit: Significant
Basis: Estimated delay due to sampling and analysis turnaround impacts. This however would occur during hot operations, therefore this risk is an operational vulnerability and does not impact this project.

Most Significant Cost Impact ($K): 200
Most Significant Schedule Impact: 4 Wks

Level: Moderate
Event Trigger:

<table>
<thead>
<tr>
<th>Handling Strategy</th>
<th>Mitigate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Develop Sample & Analytical Plans well in advance of actual operations including a strategy where a sample of every transfer is not required, i.e. take weekly or monthly samples similar to what is done for the evaporator overheads. Ensure Lab back-up instrumentation is available in case of equipment failure. Develop a contingency plan if analytical results are not available, i.e. tighten the acceptable tolerance of the latest sample to verify results and to justify continued operation. This risk however would occur during hot operations, therefore it is an operational vulnerability and does not have any residual risk to the project.</td>
</tr>
</tbody>
</table>

Handling Strategy Action Items:
- 003-1 Develop Sample & Analytical Plans well in advance of actual operations including a strategy where a sample of every transfers is not required, i.e. take weekly or months samples similar to what is done for the evaporator overheads, , , Steve Brown,
- 003-2 Ensure back-up instrumentation is provided by operations in case of equipment failure, , , Steve Brown,
- 003-3 Evaluate F-Lab (772-F) and/or DWPF Lab capability to process FBSR samples, , , Steve Brown,

HS Implementation Cost ($K): 0
Basis: Cost of back-up instrumentation could be up to $500k. The use of F-Lab (772-F) to support the project, the cost of instrumentation, procedures, training etc, may be funded by other than this project.

<table>
<thead>
<tr>
<th>HS Implementation Schedule</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>No impact to project baseline schedule.</td>
</tr>
</tbody>
</table>

Other Handling Strategies:

Statement of Residual Risk: Estimated delay due to sampling and analysis turnaround impacts. This however would occur during hot operations, therefore this risk is an operational vulnerability and does not have any residual risk project.

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
<th>Basis:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Consequence:</th>
<th>Basis:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level:</th>
<th>Most Likely</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Beat Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
</table>

| Residual Schedule Impact: | |
|---------------------------| |

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 004
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title:
Accessibility for Construction Work

Type:
- **Risk**
- **Internal**
- **Programmatic**

Category:
SRR

Assess. Element:
3.0
Title: General

Responsible Org.:
-
Contact: Mary Pallon
Date Identified: 16-Oct-06

Statement of Event:
Construction work is required at or around Tank 48 and within Building 241-96H. Congestion / Collocation of work impacts accessibility to area on or around Tank 49/241-96H and/or Operations planned activities. Scheduled construction activities impacted.

Likelihood:
- **Very Likely**
 - **Basis:** Tank 48 has one of the most congested tank tops at SRS. If not closely coordinated construction and operations activities will interfere with each other. 241-96H will be in operations as will the ARP Facility during installation of FBSR in the adjacent portion of the building.

Consequence / Benefit:
- **Significant**
 - **Basis:** Additional cost and delay to schedule.

Most Significant Cost Impact ($K):
- **100**
Most Significant Schedule Impact: 4 Wks

Level:
- **High**

Handling Strategy:
- **Mitigate**
 - **Description:** Coordinate work with operations and other projects through participation in facility Work Window Lock-ins, 8 Week Lookaheads (T8s), and Plan of the Days (PODs). When activities are locked in, ensure critical resources (i.e. rigging, radcon, IH, etc.) are onboard and ready to support.

Handling Strategy Action Items:
1. **004-1** Coordinate work with operations and other projects through participation in facility Work Window Lock-ins, 8 Week Lookaheads (T8s), and Plan of the Days (PODs), , , Mary Pallon,
2. **004-2** When activities are locked in, ensure critical resources (i.e. rigging, radcon, IH, etc.) are onboard and ready to support , , , Mary Pallon,

HS Implementation Cost ($K):
- **0**
 - **Basis:** Can be performed without additional cost

HS Implementation Schedule:
- **0**
 - **Basis:** Already part of ongoing scheduled activities

Other Handling Strategies:

Statement of Residual Risk:
Some risk of accessibility problems still remains

Residual Likelihood:
- **Likely**
 - **Basis:** The likelihood has been reduced by the RHS, but not eliminated.

Residual Consequence:
- **Significant**
 - **Basis:** Minor delay and minimal additional cost to project

Residual Risk Level:
- **Moderate**

Residual Cost Impact ($K):
- **Best Case:** 0
- **Most Likely:** 50
- **Worst Case:** 100

Residual Schedule Impact:
- **0**
 - **2 Wks**
- **4 Wks**

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 007
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title
DOE Directed Changes to Technical Requirements

Type: Risk
Assess. Element: 3.0
Title: General
Responsible Org: SRR-PM - Project Manager
Contact: Jon Lunn
Date Identified: 16-Oct-06

Statement of Event: Conceptual design begins with a given set of requirements. Requirements change or additional requirements are imposed. Scope increases.

- **Likelihood:** Likely
 - **Basis:** Typically requirements are relatively stable, however they can change. Project 413.3A EVMS performance baselines will not be established until after Preliminary Design.

- **Consequence / Benefit:** Crisis
 - **Basis:** Change in Tech baseline would likely result in cost and schedule baseline impact.

- **Most Significant Cost Impact ($K):** 5,000
 - **Most Significant Schedule Impact:** 6 Mths

- **Level:** High
 - **Event Trigger:** Currently open, close upon DOE acceptance of Final Design.

- **Handling Strategy:** Accept
 - **Description:** Changes to the Technical baseline imposed by DOE would be a change in project scope and a BCP would be generated to move funding from DOE contingency.

Handling Strategy Action Items:

- **HS Implementation Cost ($K):** Basis:
- **HS Implementation Schedule:** Basis:

Other Handling Strategies:

Statement of Residual Risk: A risk remains that DOE may impose additional technical requirements on the FBSR design.

- **Residual Likelihood:** Very Unlikely
 - **Basis:** Typically requirements are relatively stable, however they can change. Project baselines will not be established until after Preliminary Design.

- **Residual Consequence:** Crisis
 - **Basis:** Cost and schedule impact due to modified technical requirements.

- **Residual Risk Level:** High
 - **Residual Impact Basis:** Worst Case: Cost and schedule impact due to modified technical requirements.

- **Residual Cost Impact ($K):**
 - **Best Case:** 500
 - **Most Likely:** 1,000
 - **Worst Case:** 5,000

- **Residual Schedule Impact:**
 - **6 Wks**
 - **6 Mths**

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Assess risks associated with execution of 413-3B when information becomes available.
Risk / Opportunity Assessment Form

ID Number: 008
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Availability of Construction Equipment
Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General
Responsible Org.:
Contact: Mary Patton
Date Identified: 16-Oct-06

Statement of Event: It is assumed that a specialized crane can be obtained, with qualified personnel. Crane is not available when required. Project Delays.

<table>
<thead>
<tr>
<th>Likelihood:</th>
<th>Unlikely</th>
<th>Basis: This project is a high profile, accelerated project, which should increase priority for access to equipment. A crane can currently be made available on site, and has been requested for the required window.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence / Benefit:</td>
<td>Significant</td>
<td>Basis: The designated crane gets reassigned or has mechanical issues and another crane must be located for Tank 48 use.</td>
</tr>
</tbody>
</table>

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 1 Mth

Level: Moderate
Handling Strategy: Accept
Description: This risk is accepted based on priority being requested for on-site crane. Although priority for crane usage is requested, a higher priority could still "bump" this project.

Handling Strategy Action Items:

HS Implementation Cost ($K):
HS Implementation Schedule:

Other Handling Strategies:

Statement of Residual Risk: Crane may still be unavailable

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
<th>Unlikely</th>
<th>Basis: Likelihood remains unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence:</td>
<td>Significant</td>
<td>Basis: Delay while waiting for equipment</td>
</tr>
</tbody>
</table>

Residual Risk Level: Moderate
Residual Impact Basis:
- **Worst Case:** Another crane must be located for Tank 48 use.
- **Most Likely Case:** Delay while waiting for equipment
- **Best Case:** Project can reschedule without impact of overall delay

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 0 | 1 Wk | 1 Mth |

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 009
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title: Readiness/ORR Assessment Findings</th>
</tr>
</thead>
</table>
| Type: Risk
| Internal Technical |
| Category: SRR |
| Assess. Element: 3.0
| Title: General |
| Responsible Org: SRR-PO - Project Owner
| Contact: John Contardi
| Date Identified: 16-Oct-06 |

Statement of Event: Process has to be proved ready to operate. Process is found to be not ready by Readiness Assessment. Project is delayed while concerns are resolved.

Likelihood: Unlikely

Consequence / Benefit: Significant

Basis: Significant facility and system design and operating issues are very likely to be identified and resolved at earlier stages of the project and are unlikely to arise during the Operational Readiness Review (ORR). Therefore additional design, procurement, and construction activities will not be required. ORR reviewers are independent of the Project Team and may not agree with resolutions and may identify additional issues not previously evaluated.

Most Significant Cost Impact ($): 100
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Event Trigger: Open upon Start of Readiness Assessment; Close upon completion of ORR.

Handling Strategy: Mitigate

Description: Project Team develop and perform detailed management checklist prior to beginning RA. Continued engagement of DOE, Operations and Safety organizations in the system design reviews and testing activities. DOE Operations and Safety organizations to participate in test activities conducted before the DOE ORR. Engage the DOE ORR Team prior to the SAT to enable the team to become familiar with the systems and operations.

Handling Strategy Action Items:
- 009-1 Project Team develop and perform detailed management checklist prior to beginning RA. Continued engagement of DOE, John Contardi,
- 009-2 Engage the DOE ORR Team prior to the SAT to enable the team to become familiar with the systems, John Contardi,
- 009-3 Continued engagement of DOE, Operations and Safety organizations in the system design reviews and testing activities, John Contardi,
- 009-4 DOE Operations and Safety organizations to participate in test activities conducted before the DOE ORR, John Contardi,

HS Implementation Cost ($): 50
Basis: Cost of management checklist activities

HS Implementation Schedule: 0
Basis: This could be performed in parallel with ongoing startup activities as functional areas become available for assessment.

Other Handling Strategies:

Statement of Residual Risk: Findings may still occur, but any potential for major findings will have been avoided.

Residual Likelihood: Very Unlikely
Basis: Working closely with DOE reduces the likelihood of having unexpected ORR findings.

Residual Consequence: Significant
Basis: Cost of minor finding resolution and schedule delay.

Residual Risk Level: Low

Residual Impact Basis: Worst Case: Cost of finding resolution and schedule delay

Residual Impact:
- **Best Case:** 10
- **Most Likely:** 25
- **Worst Case:** 50

Residual Schedule Impact:
- **Best Case:** 0
- **Most Likely:** 2 Wks
- **Worst Case:** 1 Mth

Impacted Scope of Work:

Evaluation Comments:
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>Event Comments:</th>
<th></th>
</tr>
</thead>
</table>

ID Number: 009
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active
Risk / Opportunity Assessment Form

ID Number: 011
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title:</th>
<th>Unsafe Conditions Discovered at Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Risk Internal Technical Category: SRR</td>
</tr>
<tr>
<td>Assessed Element:</td>
<td>3.0 Title: General</td>
</tr>
<tr>
<td>Responsible Org:</td>
<td>SRR-PM - Project Manager Contact: Jon Lunn Date Identified: 16-Oct-06</td>
</tr>
</tbody>
</table>

Statement of Event: Process requires a Final Acceptance Inspection (Manual 8Q, Procedure 51) before start up. Unsafe conditions are discovered during walk down. Delay while remedial action is taken.

<table>
<thead>
<tr>
<th>Likelihood:</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>This is a new process for SRS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequence / Benefit:</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>Cost of minor design changes and schedule delay.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Most Significant Cost Impact ($K):</th>
<th>150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Most Significant Schedule Impact:</th>
<th>1 Mth</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Level:</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Trigger:</td>
<td>Risk may be realized during Final Acceptance Inspection (Manual 8Q, Procedure 51), after successful acceptance/closure of FAI risk can no longer occur.</td>
</tr>
<tr>
<td>Handling Strategy:</td>
<td>Mitigate</td>
</tr>
<tr>
<td>Description:</td>
<td>Operations, Safety, Engineering, Industrial Hygiene, Construction, QA and Maintenance to participate in design reviews and monthly walkdowns.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handling Strategy Action Items:</th>
</tr>
</thead>
<tbody>
<tr>
<td>011-1 Arrive for Operations, Safety, Engineering, Industrial Hygiene, Construction and Maintenance to participate in design reviews. , , Steve Hall,</td>
</tr>
<tr>
<td>011-2 Arrive for Operations, Safety, Engineering, Industrial Hygiene, Construction and Maintenance to participate in monthly walkdowns. , , Mary Pallon,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS Implementation Cost ($K):</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>Design reviews are already included in the project baseline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS Implementation Schedule:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>Will be conducted along with already scheduled project activities</td>
</tr>
</tbody>
</table>

Other Handling Strategies:

Statement of Residual Risk: Some SMI-51 concerns may still arise.

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>Likelihood is reduced by involving SMI-51 walkdown team in design reviews and weekly safety walkdowns.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Consequence:</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>Cost of additional design and schedule impact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level:</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Impact Basis:</td>
<td>Worst Case: Cost of additional design and schedule impact</td>
</tr>
<tr>
<td>Most Likely:</td>
<td>75</td>
</tr>
<tr>
<td>Worst Case:</td>
<td>100</td>
</tr>
<tr>
<td>Most Likely Case:</td>
<td>Cost of additional design and schedule impact</td>
</tr>
<tr>
<td>Best Case:</td>
<td>No additional cost or schedule impact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Likely:</td>
<td>75</td>
</tr>
<tr>
<td>Worst Case:</td>
<td>100</td>
</tr>
<tr>
<td>Residual Schedule Impact:</td>
<td>2 Wks</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 012</th>
<th>Revision: 02</th>
<th>Last Date Evaluated: 13-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Event Title: Stakeholder Participation
- **Type:** Risk, External, Programmatic
- **Category:** DOE
- **Assess. Element:** 3.0
- **Title:** General
- **Responsible Org.:** SRR-PO - Project Owner
- **Contact:** John Contardi
- **Date Identified:** 16-Oct-06

Statement of Event:
Project will fall under the scrutiny of various stakeholders. Stakeholders (DNFSB, DOE, Regulatory, etc.) do not accept R&D results. Project will be delayed while resolving stakeholder concerns.

Likelihood:
- **Likely**
- **Basis:** Stakeholders are eager to offer their input.

Consequence / Benefit:
- **Significant**
- **Basis:** Additional design, studies etc., will be required causing schedule delays and additional cost to project.

Most Significant Cost Impact ($K):
- **1500**
- **Most Significant Schedule Impact:** 2 Mths

Level:
- **Moderate**

Handling Strategy:
- **Mitigate**
- **Description:** Develop communication plan for involving stakeholders. Keep Stakeholders/Senior Management informed of R&D results. If stakeholders do impose additional design/operational/research/testing requirements on the project a BCP will be developed to obtain additional funding from DOE contingency. As an ongoing part of project execution the Integrated Project Team will be utilized to communicate information to Senior Management and determine actions for additional stakeholder needs as they develop.

Handling Strategy Action Items:
012.2 Prepare and issue Final Technology Report on R&D results to stakeholders... Chris Johnson.

HS Implementation Cost ($K):
- **0**
- **Basis:** This will not add additional cost to the project

HS Implementation Schedule:
- **0**
- **Basis:** Is part of ongoing activities

Other Handling Strategies:

Statement of Residual Risk:
If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

Residual Likelihood:
- **Unlikely**
- **Basis:** Likelihood has been reduced by good communication and involvement with stakeholders.

Residual Consequence:
- **Significant**
- **Basis:** Additional design, studies etc., will be required causing schedule delays and additional cost to project.

Residual Risk Level:
- **Moderate**

Residual Cost Impact ($K):
- **Best Case:** 500
- **Most Likely:** 1000
- **Worst Case:** 1500

Residual Schedule Impact:
- **0**
- **1 Mth**
- **2 Mth**

Residual Impact Basis:
- **Worst Case:** Additional design, studies etc., will be required causing schedule delays and additional cost to project.
- **Most Likely Case:** Some additional design, studies etc., will be required causing schedule delays and additional cost to project.
- **Best Case:** Minimal additional design, studies etc., will be required causing additional cost to project only.

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.
Risk / Opportunity Assessment Form

ID Number: 013
Revision: 02
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title:
Safety Basis not Accepted By DOE.

Type:
- Risk
- External
- Technical

Category:
SRR

Assess. Element:
4.0
Title: Safety In Design

Responsible Org:
SRR-DA - Design Authority
Contact: Chris Johnson
Date Identified: 16-Oct-06

Statement of Event:
TTP Safety Basis is required to be approved by DOE for implementation. DOE does not accept the Safety Basis. The Safety Basis will have to be modified or redone to DOE's acceptance requirements.

Likelihood:
- Very Unlikely
- Basis: The Tank 48 team maintains communication with DOE to ensure they are involved in the key decisions regarding the Safety Basis. Obtaining concurrence throughout each phase of the project makes this a very unlikely risk.

Consequence / Benefit:
- Crisis
- Basis: Rework of the DSA and possible changes in Control Strategies.

Most Significant Cost Impact ($K):
5,000
Most Significant Schedule Impact: 1 Yr

Level:
High
Event Trigger: Requesting DOE approval

Handling Strategy:
Mitigate
- Description: Ensure DOE involvement during development of the Safety Design Strategy (SDS) to avoid last minute surprises. DOE will participate in the CHA meetings, SIRCs and Safety Design Integration Team meetings. SRR will obtain DOE approval of interim documents such as the SDS, Conceptual Safety Design Report, Preliminary Safety Design Report and Preliminary Documented Safety Analysis. DOE has established a Technical Authority Board to review these interim documents.

Handling Strategy Action Items:
013-4 Obtain DOE approval of interim Safety Basis documents including CSDR, PPSDR, and PDMS Steve Hall,

HS Implementation Cost ($K):
0
Basis: Those activities can be accomplished in this manner without additional cost.

HS Implementation Schedule:
0
Basis: These activities are included in the Project Baseline Schedule.

Other Handling Strategies:

Statement of Residual Risk:
Risk of DSA strategy changes still remains

Residual Likelihood:
- Very Unlikely
- Basis: Likelihood reduced but not to non-creditable

Residual Consequence:
- Significant
- Basis: Modification of the DSA and minor changes in Control Strategies.

Residual Risk Level:
- Low

Residual Cost Impact ($K):
- **Best Case:** 20
- **Most Likely:** 250
- **Worst Case:** 1,000

Residual Schedule Impact:
- 0
- **2 Wks**
- **2 Mths**

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 014
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title:</th>
<th>Resources Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Risk, Internal, Programmatic</td>
</tr>
<tr>
<td>Category:</td>
<td>SRR</td>
</tr>
<tr>
<td>Assess. Element:</td>
<td>3.0</td>
</tr>
<tr>
<td>Title:</td>
<td>General</td>
</tr>
<tr>
<td>Responsible Org:</td>
<td>SRR-PM - Project Manager</td>
</tr>
<tr>
<td>Contact:</td>
<td>Jon Lunn</td>
</tr>
<tr>
<td>Date Identified:</td>
<td>16-Oct-06</td>
</tr>
</tbody>
</table>

Statement of Event:
Resources are required for the implementation of TTP Project activities. These resources include Engineering, Construction, Operations, Maintenance, vendor staffing, etc. Planned resources are not available when required. Activities cannot be completed as scheduled.

Likelihood: Likely
Basis: Experience with construction and start-up activities in other site organizations indicates that resource issues and limitations are likely to be encountered during the TTP Project.

Consequence / Benefit: Significant
Basis: Delay to project and additional cost to secure resources at a premium.

Most Significant Cost Impact ($K): 200
Most Significant Schedule Impact: 8 Wks

Level: Moderate
Event Trigger: Currently open, close upon completion of Project.

Handling Strategy: Mitigate
Description: Establish project baselines and key contract milestones. Maintain timely funding authorizations and accurate resource forecasts for all support management organizations.

Handling Strategy Action Items:
014-1 Establish project baselines and key contract milestones, Jon Lunn,

H8 Implementation Cost ($K): 0
Basis: Included within the planned Project Controls project management with no additional cost to the project.

H8 Implementation Schedule: Ongoing
Basis: Baseline and forecasting is an on-going process for the life of the Project.

Other Handling Strategies:

Statement of Risk: Planned resources could still not be available when required. Activities could not be completed as scheduled.

Residual Likelihood: Unlikely
Basis: The additional Project Controls reduce the likelihood of this event.

Residual Consequence: Significant
Basis: Most Likely Case: Project is somewhat impacted by resource limitations

Residual Risk Level: Moderate
Residual Impact Basis: Worst Case: Project is impacted by resource limitations

Residual Cost Impact ($K):
Best Case: 0
Most Likely: 100
Worst Case: 200

Residual Schedule Impact:
Best Case: 4 Wks
Most Likely: 100
Worst Case: 200

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 20.
Risk / Opportunity Assessment Form

ID Number: 016
Revision: 03
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Implementation of DNFSB Recommendation 2004-2 Required
Type: Risk
Category: DOE
Assess. Element: 4.0
Title: Safety In Design
Responsible Org: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 16-Oct-06

Statement of Event: FBSR is a Haz Cat 2 Facility with an active ventilation system classified as PS. This design strategy is outlined within letter SRR-DPM-2010-00007. A risk exists that DNFSB provide further guidance on the implementation of DNFSB 2004-2, resulting in DOE directing the FBSR Team to provide an active confinement system functionally classified as Safety Significant.

Likelihood:
- **Basis:** DOE has accepted the strategy as described in SRR-DPM-2010-00007.

Consequence / Benefit:
- **Basis:** Implementation of functionally (NPH) classified active confinement system for FBSR will require a major design change. An impact to cost and to the TTP Project schedule will be incurred.

<table>
<thead>
<tr>
<th>Most Significant Cost Impact ($K)</th>
<th>25,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Significant Schedule Impact</td>
<td>6 Mths</td>
</tr>
</tbody>
</table>

Level: High
Event Trigger: Currently open; Close after Final Design has been approved by DOE.

Handling Strategy: Accept
Description: The TTP Project Design strategy complies with current DOE orders and site procedures. There are no additional handling strategies that can be applied.

Handling Strategy Action Items:

<table>
<thead>
<tr>
<th>HS Implementation Cost ($K)</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS Implementation Schedule</td>
<td>Basis</td>
</tr>
</tbody>
</table>

Statement of Residual Risk: A risk remains that DNFSB provide further guidance on the implementation of DNFSB 2004-2, resulting in DOE directing the FBSR Team to provide an active confinement system functionally classified as Safety Significant. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis: DOE has accepted the strategy as described in SRR-DPM-2010-00007.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis: Implementation of functionally (NPH) classified active confinement system for FBSR will require a major design change. An impact to cost and to the TTP Project schedule will be incurred.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Basis: Residual Impact Basis: Worst Case: A Functionally SS active confinement system is required (e.g. NPH). Most Likely Case: Some modifications are required e.g., DCS to hardware change. Best Case: Minor modifications are required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>500</td>
</tr>
<tr>
<td>Most Likely</td>
<td>1,000</td>
</tr>
<tr>
<td>Worst Case</td>
<td>25,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td>1 Mth</td>
<td>2 Mths</td>
</tr>
<tr>
<td>2 Mths</td>
<td>6 Mths</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments: If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.
Risk / Opportunity Assessment Form

ID Number: 019
Revision: 02
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title:
Addition of the GAC to Design

Type:
- Risk
- Internal
- Technical

Assess. Element:
4.0

Title:
Safety In Design

Responsible Org.:
SRR-ENG - Engineering

Contact:
Steve Brown

Date Identified:
16-Oct-06

Statement of Event:
Currently it is assumed that a GAC (granulated activated carbon) bed will not be required in the off-gas stream from FBSR to comply with SCDHEC Standard 8 for Mercury (Hg) emission. A risk exists that an off-gas characterization could be developed that does require a GAC bed. A GAC bed will then be added to the design.

Likelihood:
Very Unlikely

Basis:
Based on 2006 Hazon ESTD test results, a preliminary evaluation (WSRC-TR-2007-00082) indicates that a GAC bed will not be required to comply with SCDHEC Standard 8 for Hg emission in FBSR off-gas.

Consequence / Benefit:
Crisis

Basis:
Need to install and maintain a GAC Bed System. Cost of design (including SS controls, PDSA rework etc.). Schedule delay to implement.

Most Significant Cost Impact ($K):
500

Most Significant Schedule Impact:
6 Mths

Level:
High

Event Trigger:
During preliminary design off-gas characterization determines need for GAC bed, or SCDHEC refuse permit.

Handling Strategy:
Mitigate

Description:
Complete analysis of Hazen test data and flowsheet development and work with environmental to determine that the GAC bed indeed is not required in sufficient time to minimize schedule impact.

Handling Strategy Action Items:
- 019-2 Complete off-gas characterization during preliminary design phase, , , Steve Brown,
- 019-3 Complete GAC bed evaluation for the production unit to comply with SCDHEC permitting requirements, , , Rm Campbell,
- 019-4 Obtain SCDHEC approval for Construction Permit, , , Rm Campbell,

HS Implementation Cost ($K):
0

Basis:
No additional cost is associated with acceleration of flowsheet development and environmental calculations.

HS Implementation Schedule:
0

Basis:
No impact to schedule baseline.

Other Handling Strategies:

Statement of Residual Risk:
A risk remains that a GAC bed is required.

Residual Likelihood:
Very Unlikely

Basis:
Likelihood of requiring a GAC bed has not been reduced.

Residual Consequence:
Critical

Basis:
Schedule impact has been reduced should a GAC bed be required.

Residual Risk Level:
Moderate

Residual Impact Basis:
Worst Case: A GAC bed is required and 3 mths duration of design and procurement

Most Likely Case:
A GAC bed is required and 2 mths duration of design and procurement

Best Case:
A GAC bed is required and 2 mths duration of design and procurement

Residual Cost Impact ($K):
- **Best Case:** 500
- **Most Likely:** 500
- **Worst Case:** 500

Residual Schedule Impact:
- 2 Mths
- 2 Mths
- 3 Mths

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 020
Revision: 02
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title: Analysis of 241-98H Structure Shows Not Qualified for I/I Concerns
Type: Risk
Category: SRR

Assess. Element: 4.0
Title: Safety In Design

Responsible Org: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 16-Oct-06

Statement of Event: It is assumed that Building 241-98H will be qualified as an I/I designed structure. Analysis determines that Building 241-98H is not qualified. Project cannot use Building 241-98H without modification.

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Basis: The existing structure was not designed for PC-3 loads but has been analyzed with current loads to meet I/I criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence / Benefit</td>
<td>Basis: Project cannot use Building 241-98H without modification</td>
</tr>
</tbody>
</table>

Most Significant Cost Impact ($K): 750
Most Significant Schedule Impact: 0 Mths

Level: High
Handling Strategy: Avoid
Description: Perform the I/I Analysis during preliminary design to identify impacts prior to baselining the project. Design project to I/I criteria.

Handling Strategy Action Items:
020-1 Perform the I/I Analysis during preliminary design to identify impacts prior to baselining the project (complete), [Sergio Mazul],
020-2 Perform project design to satisfy I/I criteria, [Sergio Mazul],

HS Implementation Cost ($K): 0
HS Implementation Schedule: 0
Basis: The analysis is already part of the project baseline
Basis: Will be included schedule baseline with earlier start date.

Other Handling Strategies:

Statement of Residual Risk: By designing to I/I criteria, this risk has been avoided.

Residual Likelihood: Basis:

Residual Consequence: Basis:

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Residual Impact Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>Most Likely</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 022
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Interfaces With New Contractor Impacts Project
Type: Risk, External, Programmatic
Category: SRR
Assess. Element: 3.0
Title: General
Responsible Org: SRR-PM - Project Manager
Contact: Jon Lunn
Date Identified: 16-Oct-06

Statement of Event: The TTP Project will have a subcontractor that has not been used at SRS. Design and contractual requirements with a new subcontractor results in delays or changes in assumed equipment interfaces. Schedule delay and rework costs.

Likelihood: Unlikely
Basis: The FBSR contract has been awarded and magnitude and details of the equipment interfaces are being resolved.

Consequence / Benefit: Crisis
Basis: Delay to project. Additional costs involved with resolution of facility interfaces and preliminary design. (above those assumed in the estimate)

Most Significant Cost Impact ($K): 2,000
Most Significant Schedule Impact: 9 Mths

Level: High
Event Trigger:

Handling Strategy: Mitigate
Description: Ensure early involvement of subcontractor in preliminary design. Expedite preliminary design.

Handling Strategy Action Items:
022-4 Assign resident personnel with TTT during the design and fabrication effort. (complete), , , Jon Lunn,
022-5 Identify critical interfaces within the baseline schedule. (complete), , , Jon Lunn,

HS Implementation Cost ($K): 0
Basis: Within the Project baseline.

HS Implementation Schedule: 0
Basis: No impact to Project baseline schedule.

Other Handling Strategies:

Statement of Residual Risk: Even with early subcontractor involvement some problems may occur.

Residual Likelihood: Very Unlikely
Basis: Likelihood is reduced by early involvement of subcontractor.

Residual Consequence: Crisis
Basis: Additional cost and schedule impact to resolve minor issues with facility interfaces

Residual Risk Level: High

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>250</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>4 Mths</td>
</tr>
<tr>
<td>6 Mths</td>
</tr>
</tbody>
</table>

Residual Impact Basis: Worst Case: Additional cost and schedule impact to resolve issues with facility interfaces
Most Likely Case: Additional cost and schedule impact to resolve minor issues with facility interfaces
Best Case: Issues arise with facility interfaces but no additional cost or schedule impact.

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk FBSR 18.
Risk / Opportunity Assessment Form

ID Number: 023
Revision: 04
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Design Assumptions and Design Uncertainties Result In Rework
Type: Risk
Category: SRR
Assess. Element: 4.0
Title: Safety In Design

Responsible Org: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 16-Oct-06

Statement of Event: Assumptions are made at the Preliminary Design Stage. One or more of these assumptions are determined to be incorrect. Design must be changed to resolve discrepancy.

Examples of these assumptions include:
- It is assumed that a new electrical substation will not be required.
- The existing stack at 241-96H will be sufficient to protect personnel from gases released during the FBSR process.
- The FBSR Process will be monitored and controlled from the 3H Control Room (Building 241-2H) via the existing Liquid Waste Control Network (LWCN) Distributed Control System (DCS). The LWCN DCS has adequate capacity to handle the additional controller and I/O (600) associated with the FBSR Process.
- Existing stack material of construction is compatible with the FBSR process.
- The existing PI System has adequate capacity for storage of FBSR process data.

Likelihood: Unlikely
Basis: This design is new to SRS and assumptions have been made during conceptual design, that if proven incorrect may result in major re-design.

Consequence / Benefit: Crisis
Basis: Significant rework will be required.

Most Significant Cost Impact ($): 3,000
Most Significant Schedule Impact: 6 Mths

Level: High
Event Trigger:

Handling Strategy: Mitigate
Description: Determine the need for new electrical substation. Develop and issue a viable automation and controls strategy. Evaluate off-gas composition and potential personnel exposure.

Handling Strategy Action Items:
- 023-3 Develop and issue a viable automation and controls strategy for the FBSR Project, , , Sergio Mazul,
- 023-4 Perform electrical load study and obtain PSUPS Part A approval, , , Sergio Mazul,
- 023-5 Perform a study to determine if inside of the stack requires the application of an additional protective coating, , , Sergio Mazul,
- 023-8 Evaluate off-gas composition for plume effects and confirm worker protection controls are required, , , Don McWhorter,

HS Implementation Cost ($): 0
Basis: No additional cost to project

HS Implementation Schedule: 0
Basis: Within project baseline schedule

Other Handling Strategies:

Statement of Residual Risk: The risk of encountering space problems within 241-96H can be avoided with the handling strategy. The worst case residual risk would be a ventilation system upgrade.

Residual Likelihood: Unlikely
Basis: Likelihood of design assumptions being incorrect remains the same.

Residual Consequence: Critical
Basis: Most Likely Case. Some assumptions are partially incorrect requiring some re-design.

Residual Risk Level: Moderate

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>500</td>
<td>1500</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact | 2 Mths | 2 Mths | 3 Mths |

Impacted Scope of Work:
| Evaluation Comments: |
| Event Comments: For design assumptions of space availability see Risk 061. |
Risk / Opportunity Assessment Form

ID Number: 024
Revision: 02
Last Date Evaluated: 11-Oct-10
Status: Active

- **Event Title:** Insufficient Maintainability Provided
- **Type:** Risk
 - Internal
 - Technical
- **Category:** SRR
- **Assess. Element:** 4.0
- **Title:** Safety In Design
- **Responsible Org:** SRR-DS - Design Services
 Contact: Sergio Mazul
 Date Identified: 16-Oct-06

Statement of Event: Design changes are required after the RDSR identifies maintainability issues.

- **Likelihood:** Likely
 Basis: First of a kind system at SRS and therefore maintainability is an unknown
- **Consequence / Benefit:** Critical
 Basis: Design changes to the FBSR skid due to maintainability issues. Cost and schedule impact.

- **Most Significant Cost Impact ($K):** 500
- **Most Significant Schedule Impact:** 3 Months

- **Level:** High
- **Event Trigger:** RDSR is issued.

- **Handling Strategy:** Mitigate
 Description: Have Maintenance, Ops and Rad Con involved in the design to ID and resolve issues during the design of the skid.

Handling Strategy Action Items:
- 024-1 Have Maintenance, Ops and Rad Con involved in the design to ID and resolve issues during the design of the skid, , , Sergio Mazul,
- 024-2 Perform RDSR early, , , Ken Fleming,
- 024-3 Develop a maintenance strategy during preliminary design, , , Sergio Mazul,
- 024-4 Use MCU lessons learned in developing maintenance strategies/design, , , Sergio Mazul,
- 024-5 Complete RAMI study, , , Sergio Mazul,

- **HS Implementation Cost ($K):** 0
 Basis: Within baseline.
- **HS Implementation Schedule:** 0
 Basis: Can be performed in parallel with already scheduled design reviews

Other Handling Strategies:

Statement of Residual Risk: A design change may still be required to provide the required maintainability

- **Residual Likelihood:** Unlikely
 Basis: Likelihood has decreased based on employing additional design reviews.
- **Residual Consequence:** Significant
 Basis: Any minor change will cost dollars and schedule.

Residual Risk Level: Moderate

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact:</th>
<th>1 Wk</th>
<th>2 Wks</th>
<th>1 Mth</th>
</tr>
</thead>
</table>

Residual Impact Basis: Worst Case: Design modification. Cost and schedule impact.

Most Likely Case: Small design modification. Cost and schedule impact.

Best Case: Minor design modification. Cost and schedule impact.

Impacted Scope of Work:

Evaluation Comments:

Event Comments: See Risk 005 for remote tooling risks.
Risk / Opportunity Assessment Form

ID Number: 027
Revision: 02
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title: Availability of Consumables

Type: Risk
Category: SRR

Assess. Element: 2.2
Title: Support Systems

Responsible Org: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 16-Oct-06

Statement of Event: Consumables are scheduled to be delivered to support testing, startup and operations. Delivery of consumables is held up (i.e., more than 1 week delay). Testing, startup and operation cannot continue without consumables.

Likelihood: Likely
Basis: Access to consumables, such as fuses, lamps, incidentals, and raw material (i.e., chemical, etc.), are contingent upon expected life of the components, expenditure of materials, storages availability and storage capabilities, as well as availability and delivery methods of suppliers. Historically, a four to eight week turn around on common raw material procurement and delivery is not unusual.

Consequence / Benefit: Significant
Basis: Delay in material receipts of greater than one week will result in potential prolonged outages and reduced production.

Most Significant Cost Impact ($K): 0
Most Significant Schedule Impact: 8 Wks

Level

Handling Strategy: Mitigate
Description: Perform identification of critical spares/resources. Set up parts in stores. Where practical, consumables critical to this project and with lead times greater than one week shall be set up in site stores.

Handling Strategy Action Items:
- 027-1 Where practical, consumables critical to this project and with lead times greater than one week shall be set up in site stores or purchased in advance, , Steve Hall,
- 027-2 Identify primary and secondary suppliers/vendors of unique consumables which can not be maintained in site stores, , Steve Hall,
- 027-3 Ensure/validate delivery system can meet needs, , Steve Hall,

HS Implementation Cost ($K): 50
Basis: 40 hours design authority engineering to research and identify 40 hours procurement to set up in FMTS. 20 hour QA to validate. Capital cost of initial consumables resourcing.

HS Implementation Schedule: 2.5
Basis: Two week and 20 hours running concurrence to design closure. Activities should not extend end dates. 40 engineering hours. 40 exempt procurement hours. 20 QA Exempt hours.

Other Handling Strategies:

Statement of Residual Risk: With critical parts and spares on hand, the remaining risk is limited to major consumables such as chemicals and cold foods.

Residual Likelihood: Unlikely
Basis: The likelihood has been reduced by the identification and procurement of additional consumables that can be kept on hand.

Residual Consequence: Negligible
Basis: Process chemicals are delayed one week.

Residual Risk Level: Low

Residual Cost Impact ($K):

<table>
<thead>
<tr>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

<table>
<thead>
<tr>
<th>Impacted Scope of Work</th>
<th>1 Wk</th>
<th>1 Wk</th>
<th>1 Wk</th>
</tr>
</thead>
</table>

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 028
Revision: 03
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title: Waste Feed Nozzle Deposits

Type: Risk
Internal
Technical
Category: SRR

Assess. Element: 1.2.1
Title: Feed System

Responsible Org: SRR-ENG - Engineering
Contact: Steve Brown
Date Identified: 23-Oct-06

Statement of Event: Currently it is assumed that feed nozzle design is acceptable; nozzle clearing methods, (flush with water or acid) demonstrated during testing, are effective. During operations, deposits form on the waste feed nozzle to the DMR and the nozzle clogs interrupting/delaying operations. Processing cannot be completed until problem is resolved.

Likelihood: Likely
Basis: Tank 48 simulant feed did clog the nozzles during Hazen testing

Consequence / Benefit: N/A
Basis: This will not impact the project during testing and startup, but would be an operational vulnerability.

Most Significant Cost Impact ($K): N/A
Most Significant Schedule Impact: N/A

Handling Strategy: Mitigate
Description: Perform ESTD testing with Tank 48 simulant. Engineering Scaled Testing Lessons Learned will be incorporated into clean in place design. Inspect DMR feed nozzle for deposits after ESTD testing. This risk is an operational vulnerability.

Handling Strategy Action Items:
- 028-2 Incorporate Engineering Scaled Testing Lessons Learned into clean in place design, Sergio Mazul,
- 028-8 Review Hazen test results and evaluate the need for more robust clean in place system, Steve Brown,

HS Implementation Cost ($K): 0
Basis: Testing is within the current cost baseline.

HS Implementation Schedule: 0
Basis: Testing is included in the current schedule.

Other Handling Strategies:

Statement of Residual Risk:
This risk, if realized would be an operational vulnerability.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis</td>
</tr>
</tbody>
</table>

Residual Risk Level:
Residual Impact Basis:

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
</table>

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 029</th>
<th>Revision: 02</th>
<th>Last Date Evaluated: 11-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Event Title: Scale-up of FBSR Process Encounters Problems

Type: Risk
Category: SRR

Assess. Element: 1.0
Title: Processing

Responsible Org.: SRR-ENG - Engineering
Contact: Steve Brown
Date Identified: 23-Oct-06

Statement of Event:
Scale-up of the steam reforming process to treat Tank 48 could result in lower throughputs than planned in the design.

Likelihood: Unlikely
Basis: The scale-up capacity from the Hazen unit to other designs has been performed in the past and is likely to be well understood.

Consequence / Benefit: N/A
Basis: Delay in schedule for Tank 48 return to service. This is an impact to the System Plan execution, however is not an impact to the project.

Most Significant Cost Impact ($k): N/A
Most Significant Schedule Impact: N/A

Level:

<table>
<thead>
<tr>
<th>Handling Strategy</th>
<th>Event Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid</td>
<td>Description: The Hazen tests will validate design flow rates of Tank 48 simulate feed. Expected flow rate will be based on a smaller 15" DMR bed unit. The design for the Tank 48 unit will be approximately 26" bed DMR. The inability of the scale-up FBSR to meet throughput requirements is not considered a risk to the project, however this is an issue that will impact the LLWDS. Use the Hazen test results to validate design flow rates of Tank 48 simulate feed, perform elutriation and material & energy balance calculations, and perform computational fluid dynamics (CFD) modeling.</td>
</tr>
</tbody>
</table>

Handling Strategy Action Items:

- 029-1 Use the Hazen test results to validate design flow rates of Tank 48 simulated feed, Steve Brown,
- 029-2 Perform elutriation and material & energy balance calculations, Steve Brown,
- 029-3 Perform computational fluid dynamics (CFD) modeling, Sergio Mazul,

HS Implementation Cost ($k): 0
Basis: No additional cost to project

HS Implementation Schedule: 0
Basis: Will be accommodated in existing scheduled tests

Other Handling Strategies:

Statement of Residual Risk: The throughput of the FBSR may still be impacted by scaleup issues. The inability of the scale-up FBSR to meet throughput requirements is not considered a risk to the project, however this is an issue that will impact the LWOPP.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Residual Impact Basis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Cost Impact ($k):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 0 | 0 | 0 |

Impact Scope of Work:

Evaluation Comments:

Event Comments: The inability of the scale-up FBSR to meet throughput requirements is not considered a risk to the project, however this is an issue that will impact the System Plan. This issue should be evaluated by the planning group for impact to the System Plan. (Reference PBS-0014, Risk 122)
Risk / Opportunity Assessment Form

ID Number: 033
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title:</th>
<th>Long Lead Procurement is Delayed or Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Risk</td>
</tr>
<tr>
<td></td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Programmatic</td>
</tr>
<tr>
<td>Category:</td>
<td>DOE</td>
</tr>
<tr>
<td>Assess. Elem:</td>
<td>2.0</td>
</tr>
<tr>
<td>Title:</td>
<td>Project</td>
</tr>
<tr>
<td>Responsible Org:</td>
<td>SRR-PM - Project Manager</td>
</tr>
<tr>
<td>Contact:</td>
<td>Jon Lunn</td>
</tr>
<tr>
<td>Date Identified:</td>
<td>23-Oct-06</td>
</tr>
</tbody>
</table>

Statement of Event: Long lead procurements are part of the TTP Project. Long lead procurements are not approved by DOE or are delayed. Project is delayed.

Likelihood: Likely
Consequence / Benefit: Crisis
Most Significant Cost Impact ($K): 1,000
Most Significant Schedule Impact: 15 Mths

<table>
<thead>
<tr>
<th>Level:</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling Strategy:</td>
<td>Mitigate</td>
</tr>
</tbody>
</table>

Handling Strategy Action Items:

Event Trigger:

H8 Implementation Cost ($K): 0
Basis: Development of Critical Decision packages are required for this project and strategy for early release of procurement/construction activities is included in the CD packages. No additional cost will be incurred by the Project.

H8 Implementation Schedule: 0
Basis: CD approval by DOE is within the current schedule.

Other Handling Strategies:

Statement of Residual Risk: Even with early submittal for long lead procurement items, a risk remains that DOE may not approve early release of procurement. If this risk is realized BCP will be developed to obtain additional funding to support the schedule extension from DOE contingency.

Residual Likelihood: Unlikely
Residual Consequence: Crisis

Residual Risk Level: High

Residual Cost Impact ($K):
- **Best Case:** 0
- **Most Likely:** 0
- **Worst Case:** 0

Residual Schedule Impact:
- **6 Wks**
- **13 Wks**
- **26 Wks**

Impacted Scope of Work:

Evaluation Comments: If this risk is realized, a BCP will be developed to obtain additional funding to support the schedule extension from DOE contingency.
Risk / Opportunity Assessment Form

ID Number: 034
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Waste Feed Line Plugs
Type: Risk
Category: SRR
Assess. Element: 4.0
Title: Safety in Design

Responsible Org.: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 23-Oct-06

Statement of Event: Feed through nozzles to DMR plug due to large waste feed solids. DMR cannot be operated, requiring design change and rework of the feed system.

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Basis: Tank 48 is likely to have some particle sizes greater than what was used during simulant testing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence / Benefit</td>
<td>Basis: Plugged feed system requiring redesign.</td>
</tr>
</tbody>
</table>

Most Significant Cost Impact ($K): 200
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Handling Strategy: Avoid
Description: Thor Treatment Technologies (TTT) to assess potential for DMR feed nozzle plugging based on potential particle size limitations associated with the process and specify proposal for risk potential mitigation/elimination.

Handling Strategy Action Items:

- **034-1** Request TTT to perform an assessment of potential for DMR feed nozzle plugging based on feed particle size limitations associated with the process and to respond with specific proposal(s) for risk potential mitigation/elimination.

H8 Implementation Cost ($K): 0
Basis: Design of waste feed system is within the project baseline.

H8 Implementation Schedule: 0
Basis: No additional cost to design

Other Handling Strategies:

Statement of Residual Risk: Risk has been avoided.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis:</td>
</tr>
</tbody>
</table>

Residual Risk Level:
Residual Impact Basis:

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 038
Revision: 04
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Availability Cannot be Achieved

Type: Risk
Internal
Technical
Category: SRR

Assess. Element: 1.0
Title: Processing

Responsible Org: SRR-ENG - Engineering
Contact: Steve Brown
Date Identified: 23-Oct-06

Statement of Event: The FBSR design assumes a 75% attainment. Actual operation of the process cannot reach availability/attainment goals. Re-design will be required to meet availability/attainment goals.

Likelihood: Unlikely
Basis: The FBSR process is a "first of a kind" for SRS. First of a kind processes usually have unanticipated attainment problems during startup and commissioning.

Consequence / Benefit: Critical
Basis: Failure to achieve attainment will result in a longer processing period for Tank 48 contents. If detected during testing and cold runs it would result in a delay to Project completion while vendor corrected problem.

Most Significant Cost Impact ($K): 0
Most Significant Schedule Impact: 3 Mths

Level: Moderate
Event Trigger:

Handling Strategy: Mitigate
Description: Vendor is required to perform a RAMI analysis on the system. Have Vendor engineers on hand during vendor testing, startup and cold runs. This is not considered a risk to the project, as risk during startup has been avoided, however this is an operational vulnerability that could impact the System Plan.

Handling Strategy Action Items:
- 038-1 Arrange for Vendor Engineers to be present during SAT, startup and cold runs, . . , Sergio Mazul,
- 038-2 Identify specific unit operations that would potentially benefit from a mockup, . . , Steve Hall,
- 038-3 Perform mockup, troubleshoot and streamline unit ops as required, . . , Chris Myers,

HS Implementation Cost ($K): 100
Basis: Cost of Vendor Engineers’ support, mockup testing and rework

HS Implementation Schedule: 2 Mths
Basis: Duration of activities

Other Handling Strategies:

Statement of Residual Risk: After streamlining operations as much as feasible, a risk of not being to reach 75% attainment may still exist. The inability of the scaled-up FBSR to meet throughput requirements is not considered a risk to the project, however this is an operational vulnerability that could impact the System Plan.

Residual Likelihood:
Basis:

Residual Consequence:
Basis:

Residual Risk Level:
Residual Impact Basis:

Residual Cost Impact ($K):
- **Best Case**
- **Most Likely**
- **Worst Case**

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Action Item 1 modified, action item 4 added, and action items 2 and 3 deleted as they are no longer being performed. The inability of the scaled-up FBSR to meet availability requirements is not considered a risk to the project if realized after cold runs and testing, however this is an issue that will impact the System Plan. This issue should be evaluated by the Planning Group for impact to the System Plan. (Reference FBS-SR-0014, Risk- 122)
Risk / Opportunity Assessment Form

ID Number: 043
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title:
Engineered Equipment (Modules/Skids) Deliveries do not Support Project Schedule

Type:
Risk
External
Programmatic

Category:
SRR

Assess. Element:
2.0

Title:
Project

Responsible Org:
SRR-DS - Design Services

Contact:
Sergio Mazul

Date Identified:
23-Oct-06

Statement of Event:
Engineered equipment (modules/skids) are required to be fabricated, component tested and released early to support the project schedule. Delivery of equipment does not support the project schedule. Project is delayed.

Likelihood:
Likely
Basis: Early release of equipment is required to support project schedule.

Consequence / Benefit:
Critical
Basis: Project delays and added cost to the Project.

Most Significant Cost Impact ($K): 500

Most Significant Schedule Impact: 3 Mths

Level:
High

Handling Strategy:
Mitigate

Description:
Have an expeditor assigned to the Project Team to expedite and track procurements.

Handling Strategy Action Items:

- 043-1 Assign an expeditor assigned to the Project Team to expedite and track procurements. . . . Jon Lunn,
- 043-2 Assign resident personnel with TTT during the design and fabrication effort . . . Jon Lunn,

HS Implementation Cost ($K):

- 0
Basis: Costs within the current baseline.

HS Implementation Schedule:

- 0
Basis: No impact to schedule baseline.

Other Handling Strategies:

Statement of Residual Risk:
May need to pay expediting fees to meet our need dates. ($200K)

Residual Likelihood:
Unlikely
Basis: Likelihood of realizing risk has been reduced with the assignment of a FPEG

Residual Consequence:
Critical
Basis: Expediting fees are required to avoid schedule impact

Residual Risk Level:
Moderate

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact | 2 Mths | 3 Mths |

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 046
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title
Material Deposits Build up in Process Equipment During Operation

Type
- **Risk**
- **Technical**

Assess. Element
4.0

Title
Safety in Design

Responsible Org.
- **SRR-ENG - Engineering**

Contact
Steve Brown

Date Identified
23-Oct-06

Statement of Event
Rate of deposition is unknown. Deposition may lead to blockage of instrumentation sensors (in addition instrumentation important to safety) within process equipment and loss of throughput capacity and increased maintenance downtime due to build-up on the process equipment.

Likelihood
- **Likely**

Basis: Build up of material was identified inside the DMR and process equipment during testing.

Consequence / Benefit
- **N/A**

Basis: Delay in Tank 48 return to service due to the loss of capacity and shutdowns.

Most Significant Cost Impact ($K): N/A

Most Significant Schedule Impact: N/A

Level

Handling Strategy
Mitigate

Description: Analyze material samples collected from Hazen testing. Inspect DMR for build-up during all testing and develop ops and maintenance procedures for preventing build-up or cleaning during radioactive operation. This risk will not impact the project, however will remain as a potential operational vulnerability.

Handling Strategy Action Items:
- 046.2 Inspect DMR for build-up during all testing, Satish Shah,
- 046.3 Develop maintenance procedures for cleaning, Satish Shah,
- 046.4 Inspect for build-up during startup testing, Steve Brown,
- 046.5 Include instrument plugging in RAMI analysis, Sergio Mazul,

HS Implementation Cost ($K):
- 0

Basis: Cost of testing is within the current cost baseline.

HS Implementation Schedule:
- 0

Basis: Testing is within the current schedule baseline.

Other Handling Strategies:

Statement of Residual Risk
The residual risk will not impact the project, however will remain as a potential operational vulnerability.

Residual Likelihood:

Basis:

Residual Consequence:

Basis:

Residual Risk Level:

Residual Cost Impact ($K):

<table>
<thead>
<tr>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
</table>

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 050
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Tank Farm Equipment Failure

<table>
<thead>
<tr>
<th>Type:</th>
<th>Risk</th>
<th>External</th>
<th>Programmatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category:</td>
<td>SRR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assess. Element:</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible Org:</th>
<th>SRR-PO - Project Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact:</td>
<td>John Contardi</td>
</tr>
<tr>
<td>Date Identified:</td>
<td>23-Oct-06</td>
</tr>
</tbody>
</table>

Statement of Event:
The successful processing of Tank 48 waste is dependent upon the ability of the HTF infrastructure to meet FBSR interface demands by having the required support systems and interfacing systems available when needed. If HTF systems are not available when required, processing cannot proceed.

<table>
<thead>
<tr>
<th>Likelihood:</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>The interfacing systems and utilities are aged, however regular, planned preventive maintenance is being performed to maximize their availability and reliability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequence / Benefit:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td>The reliability and availability of HTF infrastructure is beyond the scope of this project. However if these systems fail to be available when required, startup or testing may be minimally impacted or in the long-term, the System Plan may be impacted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Most Significant Cost Impact ($K):</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Significant Schedule Impact:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Level:

<table>
<thead>
<tr>
<th>Event Trigger:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
</tbody>
</table>

Handling Strategy Action Items:

<table>
<thead>
<tr>
<th>HS Implementation Cost ($K):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS Implementation Schedule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
</tr>
</tbody>
</table>

Other Handling Strategies:

Statement of Residual Risk:

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Consequence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
</tr>
</tbody>
</table>

Residual Risk Level:

<table>
<thead>
<tr>
<th>Residual Risk Level:</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

<table>
<thead>
<tr>
<th>Residual Schedule Impact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis:</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments: The inability of the HTF infrastructure to meet availability and reliability requirements is an issue that will impact the System Plan. This issue has been evaluated for impact to the System Plan (Ref PBS-SR-0014 - 011) and handling strategies are underway.
Risk / Opportunity Assessment Form

ID Number: 056
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Facility Support System Capacity/Life

Type: Risk
External
Programmatic
Category: SRR

Assess. Element: 2.1
Title: Utilities Systems Tie-ins

Responsible Org: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 24-Oct-06

Statement of Event:
The design and operation of the FBSR relies upon site utility systems meeting their design capacities. Site utilities do not meet their performance requirements and are not reliable. FBSR process cannot operate by relying on site utilities.

Likelihood:
- **Category:** Unlikely
- **Basis:** Most of the site utilities are currently being used.

Consequence / Benefit:
- **Consequence:** N/A
- **Benefit:** TTP Project will ensure that site utilities are have adequate capacity, however, the continued addition of other projects and the age of the utility systems will remain an operational vulnerability.

Most Significant Cost Impact ($K):
- **Impact:** N/A

Most Significant Schedule Impact:
- **Impact:** N/A

Level:
- **Event Trigger:**
 - **Handling Strategy:** Mitigate
 - **Description:** Determine the utility needs earlier during preliminary design and verify their availability. Have maintenance and Ops verify that the utilities are in good working order during the design phase. Schedule impact avoided. Ensure the process design can handle anticipated support system unplanned interruptions without undue consequences by either prevention (e.g. safe shutdown, stand by mode, etc.) or by including means to recover (e.g. flushing). TTP Project will ensure that site utilities are have adequate capacity, however, the continued addition of other projects and the age of the utility systems will remain an operational vulnerability.

Handling Strategy Action Items:
- 056.1 Determine the utility needs earlier during preliminary design, , , Sergio Mazul,
- 056.2 Perform study to verify utilities availability, , , Sergio Mazul,
- 056.3 Ensure the process design can handle anticipated support system unplanned interruptions without undue consequences by either prevention (e.g. safe shutdown, stand by mode, etc.) or including means to recover (e.g. flushing), , , Sergio Mazul,

HS Implementation Cost ($K):
- **Basis:** No additional cost as this will be performed as part of design

HS Implementation Schedule:
- **Basis:** The duration of utilities verification activity. This will be performed early and in parallel with other design activities.

Other Handling Strategies:

Statement of Residual Risk:
This remains an operational vulnerability.

Residual Likelihood:
- **Basis:**

Residual Consequence:
- **Basis:**

Residual Risk Level:
- **Residual Impact Basis:**

Residual Cost Impact ($K):
- **Best Case**
- **Most Likely**
- **Worst Case**

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
For electrical support system capacity risks, refer to Risk 023.
Risk / Opportunity Assessment Form

ID Number: 057
Revision: 02
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title
Integration of Multiple Internal Technical Agencies

Type
<table>
<thead>
<tr>
<th>Risk</th>
<th>Internal</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category: SRR</td>
</tr>
</tbody>
</table>

Assess. Element
3.0

Title: General

Responsible Org.
SRR-DS - Design Services

Contact: Sergio Mazul
Date Identified: 24-Oct-06

Statement of Event
The project will require effective coordination of the following technical agencies interactions and deliverables: Operations, HTF Engineering, Design Engineering, Construction, Transportation, Rigging, RadCon, environmental permitting. The technical interaction between different work groups and disciplines can not be coordinated effectively. Lack of coordination causes delays in the project schedule and ineffective use of resources.

Likelihood
| Likely |

Basis: Project requires significant technical integration.

Consequence / Benefit
| Critical |

Basis: Delays in the project schedule, add costs, and ineffective use of resources.

Most Significant Cost Impact ($K): 500
Most Significant Schedule Impact: 3 Mths

Level
| High |

Handling Strategy
Mitigate

Description: Assign a PEM to coordinate this effort and have regular Engineering Meetings with the total engineering team.

Handling Strategy Action Items:

HS Implementation Cost ($K):
| 0 |

Basis: This activity can be performed without any additional cost.

HS Implementation Schedule:
| 0 |

Basis: Throughout the entire project design phase.

Other Handling Strategies:

Statement of Residual Risk
Integration problems may still occur.

Residual Likelihood
| Unlikely |

Basis: The probability of this risk occurring has been reduced with the additional management steps taken.

Residual Consequence
| Marginal |

Basis: Minor integration issues require resolution, design rework, cost and schedule impact.

Residual Risk Level
| Low |

| Residual Cost Impact ($K):
<table>
<thead>
<tr>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

| 1 Wk |
| |

| 2 Wks |

Residual Impact Basis: Worst Case: Integration issues require resolution, design rework, cost and schedule impact.

Most Likely Case: Minor integration issues require resolution, design rework, cost and schedule impact.

Best Case: Minor integration issues require resolution but do not impact schedule or cost.

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 058</th>
<th>Revision: 02</th>
<th>Last Date Evaluated: 4-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Event Title: Multiple Design Input Documents

Type: Risk

Assess. Element: 3.0

Title: General

Responsible Org: SRR-DS - Design Services

Contact: Sergio Mazul

Date Identified: 24-Oct-06

Statement of Event: The design requirements for the project will be developed and documented in a TR&C and the procurement of the process modules will be performed using a procurement specification. Requirements could be omitted or mis-stated in either document causing conflicts between the two documents and eventually installation and operational problems.

Likelihood: Very Unlikely

Basis: Based on experience of other first of a kind projects at SRS, multiple reviews have been performed.

Consequence / Benefit: Marginal

Basis: Delays in the project schedule, add costs, and ineffective use of resources.

Most Significant Cost Impact ($K): 50

Most Significant Schedule Impact: 2 Wks

Level: Low

Handling Strategy: Mitigate

Description: Assign a PEM to coordinate this effort and have regular Engineering Meetings with the total engineering team.

Handling Strategy Action Items:

<table>
<thead>
<tr>
<th>HS Implementation Cost ($K):</th>
<th>0</th>
<th>Basis: This activity can be performed without any additional cost.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS Implementation Schedule:</td>
<td>0</td>
<td>Basis: Throughout the entire project design phase.</td>
</tr>
</tbody>
</table>

Other Handling Strategies:

Statement of Residual Risk: Integration problems may still occur.

Residual Likelihood: Very Unlikely

Basis: The probability of this risk occurring has been reduced with the additional management steps taken.

Residual Consequence: Marginal

Basis: Minor integration issues require resolution, design rework, cost and schedule impact.

Residual Risk Level: Low

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 1 Wk | 2 Wks |

<table>
<thead>
<tr>
<th>Residual Impact Basis:</th>
<th>Worst Case: Integration issues require resolution, design rework, cost and schedule impact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Likely Case:</td>
<td>Minor integration issues require resolution, design rework, cost and schedule impact.</td>
</tr>
<tr>
<td>Best Case:</td>
<td>Minor integration issues require resolution but do not impact schedule or cost.</td>
</tr>
</tbody>
</table>

Impact Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 059
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title
Undefined Disposal Method for Waste Generated During Operations and Eventual Stand-by/Lay-up

Type
Internal
Programmatic
Category: SRR

Assess. Element
4.0
Title: Safety in Design

Responsible Org
SRR-ENG - Engineering
Contact: Steve Brown
Date Identified: 24-Oct-06

Statement of Event
Additional waste e.g., filters, failed components, DMR/CRR bed material etc., will require disposal during operations and a disposal path for equipment from eventual stand-by/lay-up of the FBSR process should be identified during the design phase. No disposal path for additional waste can be found and aspects of the design which are necessary to assist in stand-by/lay-up have not been incorporated.

Likelihood
Unlikely
Basis: Filters, failed components, DMR/CRR bed material etc., will require replacement during 2 years of operation. This equipment has not been qualified for disposal in solid waste, however, significant progress has been made and resolution is close.

Consequence / Benefit
Significant
Basis: A disposal path for waste must be identified prior to waste generation (e.g., filter, failed components or bed material removal etc.) or obtain Site Manager’s approval. Once a disposal path is identified or Site manager approves, the filter, bed material etc., could be removed and the process restarted. A cost and schedule impact is realized to identify disposal path.

Most Significant Cost Impact ($k): 50
Most Significant Schedule Impact: 1 Mths

Level
Moderate

Handling Strategy
Avoid
Description: Identify disposal path upfront in preparation for filter, DMR/CRR bed material/fouled components replacement.

Handling Strategy Action Items:
- 059.1 Add Waste Disposal Plan update to the Project Schedule, , , , Steve Brown,
- 059.2 Identify disposal path upfront in preparation for filter replacement in Waste Disposal Plan update, , , , Steve Brown,
- 059.3 Develop a plan to address storage/reuse and/or disposal of items from stand-by or lay-up. Examples include DMR and CRR bed material, , , , Steve Brown,

HS Implementation Cost ($k):
0
Basis: Within current project baseline.

HS Implementation Schedule:
0
Basis: No impact to project baseline schedule.

Other Handling Strategies:

Statement of Residual Risk:

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis:</td>
</tr>
<tr>
<td>Residual Risk Level</td>
<td>Residual Impact Basis:</td>
</tr>
<tr>
<td>Residual Cost Impact ($k):</td>
<td>Best Case</td>
</tr>
<tr>
<td>Residual Schedule Impact:</td>
<td>0</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 061
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title: Facility Space and Weight Limitations</th>
</tr>
</thead>
</table>
| **Type:** Risk
Internal
Technical
Category: SRR |
| **Assess. Element:** 2.2.1
Title: Building 241-96H Structure |
| **Responsible Org:** SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 24-Oct-06 |

Statement of Event: The FBSR process will be installed within Building 241-96H. The available space/weight capacity within the building is insufficient to house the process.

Likelihood: Likely
Basis: Data from the FBSR Vendor indicates that limitations in space/weight to house the process could cause design rework.

Consequence / Benefit: Crisis
Basis: The Project would not be a viable option without significant design rework.

Most Significant Cost Impact ($K): 10,000
Most Significant Schedule Impact: 8 Mths

Level: High

Handling Strategy: Mitigate
Description: As-built available space within the building. Make the space availability/weight limits a requirement for the FBSR Vendor.

Handling Strategy Action Items:
- 081-10 Regularly discuss remote tooling and maintenance interfaces to ensure design allows space for these operations (Henkel), John Contardi,
- 081-11 Provide facility weight limitations to vendor (Hannibal), John Contardi,
- 081-3 Obtain dimensional information at vendor's preliminary design completion (Re-evaluate space limitations based on coal carryover findings), Sergio Mazul,
- 081-4 Identify additional D&R as applicable, Sergio Mazul,
- 081-6 Confirm space limitations after preliminary design, Sergio Mazul,
- 081-7 Utilize the vendor's 3-D model to jointly perform dimensional reviews, Sergio Mazul,
- 081-8 Investigate and recommend process and design modifications to reduce footprint and weight (e.g. project deviation notices), John Contardi,
- 081-9 Vendor to exercise internal and external change control (e.g. project deviation notices), Jon Lunn,

HS Implementation Cost ($K): 0
Basis: No additional cost to specify this requirement.

HS Implementation Schedule: 0
Basis: No impact to schedule.

Other Handling Strategies:

Statement of Residual Risk: Some minor interferences may still occur and/or rework to accommodate additional loading.

Residual Likelihood: Likely
Basis: The likelihood has been reduced but remains likely.

Residual Consequence: Crisis
Basis: Minor re-design and delay

Residual Risk Level: High

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>1,000</td>
<td>5,000</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 0
| | 2 Mths |

| | 6 Mths |

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 23.
Risk / Opportunity Assessment Form

ID Number: 062
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Project Strategy Does Not Support Tank 48 Return to Service Need

<table>
<thead>
<tr>
<th>Type</th>
<th>Assess. Element</th>
<th>Title</th>
<th>Responsible Org</th>
<th>Contact</th>
<th>Date Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>3.0</td>
<td>General</td>
<td>SRR-PM - Project Manager</td>
<td>Jon Lunn</td>
<td>24-Oct-06</td>
</tr>
</tbody>
</table>

Statement of Event: Tank 48 is required to be placed back in service to support the Liquid Waste System Plan. The 241-96H FBSR process is designed to be installed and process Tank 48 contents to allow the tank to be placed back into service when required. A contract strategy must be developed and approved by DOE to be implemented in the timeframe allowed. A contract strategy cannot be developed that will both meet with DOE approval, be fully integrated with the proposed project logic and meet the LLWDSP Tank 48 return to service target date.

Likelihood: Very Likely
Consequence / Benefit: N/A
Basis: The current project schedule range and operational duration may not support this date.

Level:
Event Trigger:

Handling Strategy: Accept
Description: If Tank 48 cannot be returned to service to support the System Plan, future Tank Closure commitments may not be achieved. This is not a risk for the Project, however it is an issue to be resolved by the LWO Planning Group. (Reference PBS-SR-0014, Risk 184)

Handling Strategy Action Items:

HS Implementation Cost ($K): Basis:
HS Implementation Schedule: Basis:

Other Handling Strategies:

Statement of Residual Risk:

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Cost Impact ($K):</td>
<td>Basis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual Schedule Impact:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments: If Tank 48 cannot be returned to service to support the System Plan, future Tank Closure commitments may not be achieved. This is not a risk for the Project, however it is an issue to be resolved by the LWO Planning Group. (Reference PBS-SR-0014, Risk 184)

Note: The above text is a natural representation of the Risk / Opportunity Assessment Form as extracted from the document page.
Risk / Opportunity Assessment Form

ID Number: 063
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: FBSR Equipment Transportation Requires Additional Precautions
Type: Risk
Category: SRR

Assess. Element: 2.0
Title: Project

Responsible Org: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 24-Oct-06

Statement of Event: The FBSR modules are to be transported to SRS using a commercial haulage contractor. The modules cannot be transported without a special vehicle or highway infrastructure. Project is delayed.

Likelihood: Very Unlikely
Basis: Transportation requirements are known and a special vehicle can be made available.

Consequence / Benefit: Significant
Basis: Project is delayed and additional precautions are taken prior to shipping.

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 4 Weeks

Level: Low
Event Trigger:

Handling Strategy: Mitigate
Description: Plan up front in the design of the skids and coordinate with the Vendor to ensure special vehicles are available. Perform receipt inspection.

Handling Strategy Action Items:
- 083-2 Review vendor’s shipping strategy, ..., Sergio Mazul,
- 083-3 Perform receipt inspection of FBSR skids and equipment, ..., Bruce Dragon,
- 083-4 Review shipping precautions for refractory shipping (vendor refractory shipping plan), ..., Sergio Mazul,

HS Implementation Cost ($K): 0
Basis: This cost is already within the project baseline, the work will be done earlier.

HS Implementation Schedule: 0
Basis: No impact to schedule.

Other Handling Strategies:

Statement of Residual Risk: Prior shipping, additional precautions are identified.

Residual Likelihood: Very Unlikely
Basis: Likelihood has not been decreased.

Residual Consequence: Significant
Basis: Delay is realized while additional precautions are installed.

Residual Risk Level: Low
Residual Impact Basis: Worst Case. Delay is realized while additional precautions are installed.

Residual Cost Impact ($K):
- **Best Case:** 0
- **Most Likely:** 50
- **Worst Case:** 100

Residual Schedule Impact:
- 2 Wks
- 4 Wks

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 064 Revision: 02 Last Date Evaluated: 4-Oct-10 Status: Active

Event Title: Multiple External Interfaces

Type: Risk External Technical Category: SRR

Assess. Element: 3.0 Title: General

Responsible Org: SRR-PM - Project Manager Contact: Jon Lunn Date Identified: 24-Oct-06

Statement of Event: The TTP project has multiple external interfaces (e.g., process equipment vendor, oxygen supply unit vendor, vendors for consumables etc.). Integration of these interfaces is ineffective. Delays to the project occur.

Likelihood: Likely Basis: Processes exist for identification and early approval of long lead procurement. Organizations that support this project are subject to conflicting priorities.

Consequence / Benefit: Critical Basis: Delays in receipt of vendor supplied equipment/consumables would impact the project schedule. Delays in key resources could delay project activities.

Most Significant Cost Impact ($K): 750 Most Significant Schedule Impact: 12 Wks

Level: High Event Trigger: Description: Schedule early approval of long lead procurements to ensure critical vendor information is available in a timely fashion. Integrate project activities into facility schedule. Establish project milestones to manage schedule float and visibility of project priorities.

Handling Strategy: Mitigate

Handling Strategy Action Items:
054-3 Establish project milestones to manage schedule float and visibility of project priorities, Jon Lunn,

HS Implementation Cost ($K): 0 Basis: Within project cost baseline.

HS Implementation Schedule: 0 Basis: No impact to project schedule.

Other Handling Strategies:

Statement of Residual Risk: Materials and resources still may not be available when needed.

Residual Likelihood: Very Unlikely Basis: The likelihood of having resource problems has been reduced by exercising additional project controls.

Residual Consequence: Significant Basis: Project is somewhat impacted by resource problems

Residual Risk Level: Low

Residual Cost Impact ($K): 0 Most Likely: 50 Worst Case: 100

Residual Schedule Impact: 0 4 6 Wks

Residual Impact Basis: Worst Case: Project is still impacted by resource problems
Most Likely Case: Project is somewhat impacted by resource problems
Best Case: Resource problems occur, but work arounds can be found

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

Event Title: Emergent Startup Issues
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>ID Number: 066</th>
<th>Revision: 03</th>
<th>Last Date Evaluated: 4-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Type: Risk
Internal
Technical
Category: SRR
Assess. Element: 3.0
Title: General

Responsible Org: SRR-ENG : Engineering
Contact: Steve Brown
Date Identified: 24-Oct-06

Statement of Event: There is minimal experience with the FBSR process in the DOE complex, and none at SRS. The FBSR process is new to SRS. Issues emerge during SRS startup that delay startup and affect operations. Minimum facility acceptance testing is planned.

Likelihood: Very Likely
Basis: It is likely that issues will emerge during SRS startup that will delay startup and affect operations based on lessons learned from other new first of the kind processes at SRS.

Consequence / Benefit: Crisis
Basis: Possible delays to perform troubleshooting.

Most Significant Cost Impact ($K): 300
Most Significant Schedule Impact: 20 Wks

Level: High
Handling Strategy: Mitigate
Description: Incorporate lessons learned. Ensure sufficient time is allotted for operator/startup training.

Handling Strategy Action Items:
- 066-3 Incorporate lessons learned into FBSR design, Sergio Mazul,
- 066-4 Schedule operator/startup training time, Jon Lunn,
- 066-5 Assign startup engineers/operators to Idaho to support startup of that facility and gain experience, Jon Lunn,

HS Implementation Cost ($K): 0
Basis: Within the current baseline.

HS Implementation Schedule: 0
Basis: No schedule impact.

Other Handling Strategies:

Statement of Residual Risk: Some startup issues may still arise

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis: Incorporating lessons learned and training will reduce the likelihood of issues during startup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis: Minor startup issues require resolution, incurring cost and schedule impact</td>
</tr>
<tr>
<td>Residual Risk Level</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
| Residual Cost Impact ($K): | **Best Case**: 40
Most Likely: 100
Worst Case: 125 |
| Residual Schedule Impact | 1 Wk
4 Wks
8 Wks |

Residual Impact Basis:
- **Worst Case:** Startup issues require resolution, incurring cost and schedule impact
- **Most Likely Case:** Minor startup issues require resolution, incurring cost and schedule impact
- **Best Case:** Minor startup issues require resolution, incurring cost and schedule impact

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 069
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title
Facility Services Design Complexity

Type
- Risk
- Internal
- Technical

Category
SRR

Assessment Element
2.1
Title: Utilities Systems Tie-ins

Responsible Org
SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 24-Oct-06

Statement of Event
The design of tie-ins to facility services is assumed to be straightforward. Designs for service tie-ins encounter issues which make the implementation of a successful design more complex than previously assumed.

Likelihood:
- Unlikely
 Basis: The design of tie-ins to facility services is usually straightforward.

Consequence / Benefit:
- Significant
 Basis: Delays in the project schedule, additional costs, and ineffective use of resources.

Most Significant Cost Impact ($K): 125
Most Significant Schedule Impact: 3 Wks

Level
- Moderate

Handling Strategy
- Mitigate
 Description: Specify and/or coordinate the tie-in point in the specification or during the review and approval of the Vendor design.

Handling Strategy Action Items:
- 069-1 Specify and/or coordinate the tie-in point in the specification or during the review and approval of the Vendor design , , , Sergio Mazul,

H8 Implementation Cost ($K):
- 0
 Basis: Can be accommodated without any additional cost.

H8 Implementation Schedule:
- 0
 Basis: Will be part of vendor design review and approval process.

Other Handling Strategies:

Statement of Residual Risk
Some minor problems may still be encountered

Residual Likelihood:
- Very Unlikely
 Basis: Likelihood has been reduced by specifying tie-in points and reviewing vendor designs for correct tie-ins.

Residual Consequence:
- Marginal
 Basis: Minor rework required. Cost and schedule delay

Residual Risk Level:
- Low

Residual Cost Impact ($K):
- Best Case: 25
- Most Likely: 50
- Worst Case: 100

Residual Schedule Impact:
- 1 Wk
- 2 Wks

Residual Impact Basis
- Worst Case: Some rework required. Cost and schedule delay

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 070
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Persistent Contamination Control Issues
Type: Risk
Category: SRR
Assess. Element: 4.0
Title: Safety In Design
Responsible Org: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 24-Oct-06

Statement of Event: It is assumed that the design of the Tank 48 FBSR will limit contamination control issues. The FBSR process is found to have aspects of the design and operational strategy which may create persistent contamination control problems.

Likelihood: Unlikely
Basis: This is a new process at SRS and has operational differences with established facilities however, design will significantly prevent those issues e.g. use of welded connections.

Consequence / Benefit: Significant
Basis: During operations a rising level of contamination occurs. Decontamination costs, loss of production and modification to correct problem before process is allowed to restart. (Assume 50k for cleanup, 50k for modification and 2 mths delay)

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Event Trigger:

Handling Strategy: Mitigate
Description: Design equipment and facility for ease of decontamination. During cold runs, investigate potential contamination pathways and perform NDE per appropriate code (e.g. Hydrostatic testing, weld UT/MT/PT or rad inspection).

Handling Strategy Action Items:
- 070-1 Design equipment and facility for prevention and ease of decontamination (including evaluation of lessons learned from SPF and ARP/MCU), Sergio Mazul
- 070-2 During cold runs investigate potential contamination pathways, Sergio Mazul
- 070-3 Perform NDE per appropriate code (e.g. Hydrostatic testing, weld UT/MT/PT or rad inspection), Mary Pallon

HS Implementation Cost ($K): 0
Basis: Within the existing cost baseline.

HS Implementation Schedule: 0
Basis: No impact to the schedule baseline.

Other Handling Strategies:

Statement of Residual Risk: Contamination may still occur, but to a lesser degree.

Residual Likelihood: Very Unlikely
Basis: Testing should have identified and corrected major potential contamination pathways.

Residual Consequence: Marginal
Basis: Persistent contamination control issue occurs which requires operations to be halted while decontamination and corrective action is taken.

Residual Risk Level: Low
Residual Impact Basis: Worst Case: Persistent contamination control issues occur, require corrective action, possible minor design modification and impact production.

Residual Cost Impact ($K):
- **Best Case:** 0
- **Most Likely:** 10
- **Worst Case:** 50

Residual Schedule Impact:
- **0 Wks**
- **1 Wk**
- **2 Wks**

Impact Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 072
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Module Handling and Installation
Type: Risk
Category: SRR
Assess. Element: 2.0
Title: Project
Responsible Org.: -
Contact: Mary Pallon
Date Identified: 24-Oct-06

Statement of Event: The FBSR process equipment will be provided from the vendor in large modules which are assumed to be capable of being installed without building modification. A risk exists that these modules require additional specialized lifting equipment (cranes, jacks, rollers) and additional building modifications to allow their lifting and positioning inside Building 241-96H.

Likelihood: Likely
Basis: Based on conceptual data

Consequence / Benefit: Marginal
Basis: Delays while specialized rigging equipment is fabricated and cost of fabrication and any additional building modifications.

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 2 Wks

Level: Moderate
Event Trigger:

Handling Strategy: Avoid
Description: Ensure requirements are placed in procurement specification for handling equipment to be provided by the vendor. Review vendor design and lifting procedures. Review module constructability.

Handling Strategy Action Items:
- 072.2 Review vendor lifting procedures, Mary Pallon,
- 072.3 Review vendor design, Steve Hall,
- 072.4 Develop and issue project specific QA plan, Woody Meadows,
- 072.5 Assign constructability representative to ensure vendor module design and fabrication support installation into 241-96H, Mary Pallon,
- 072.6 Constructability representative to interface with construction department to ensure lift plans and rigging equipment align with module design and fabrication, Jack Thompson,
- 072.7 Perform model reviews to validate module installation, Mary Pallon,

HS Implementation Cost ($K): 0
Basis: Will be included in subcontractor estimate

HS Implementation Schedule: 0
Basis: Will be included in subcontractor schedule

Other Handling Strategies:

Statement of Residual Risk: Risk has been avoided

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Residual Impact Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>0</td>
</tr>
<tr>
<td>Most Likely</td>
<td>0</td>
</tr>
<tr>
<td>Worst Case</td>
<td>0</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 073
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Secondary Containment Required For Off-Gas and Secondary Confinement

Type: Risk
Category: SRR

Assess. Element: 4.0
Title: Safety In Design

Responsible Org.: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 24-Oct-06

Statement of Event: The current design assumes that the off-gas can be routed through the interior of the building to connect with the existing HVAC System. A risk exists that the configuration of the off-gas line/secondary confinement requires that it must exit the building to allow a tie-in and will require a secondary confinement to be constructed for that section of line.

Likelihood: Very Unlikely
Basis: The off-gas line/secondary confinement will be routed through blockouts made in the existing wall. These blockouts would have to have significant interferences which cannot be re-engineered to maintain wall structural integrity.

Consequence / Benefit: Significant
Basis: Would require a redesign of off gas/secondary confinement system piping and result in lost project time.

Most Significant Cost Impact ($K): 200
Most Significant Schedule Impact: 8 Wks

Level: Low
Event Trigger: During design activities it is determined that the off gas line must be routed outside of the building.

Handling Strategy: Avoid
Description: Design ductwork as Level 5.

Handling Strategy Action Items:

- 073-3 Specify ductwork design as Level 5, , , Sergio Mazul,

HS Implementation Cost ($K): 0
Basis: Within the current cost baseline.

HS Implementation Schedule: 0
Basis: No impact to the project schedule.

Other Handling Strategies:

Statement of Residual Risk:

- **Residual Likelihood:**
 - **Basis:**

- **Residual Consequence:**
 - **Basis:**

Residual Risk Level:
Residual Impact Basis:

Residual Cost Impact ($K):

<table>
<thead>
<tr>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
</table>

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments:

Risk / Opportunity Assessment Form

ID Number: 075 Revision: 03 Last Date Evaluated: 4-Oct-10 Status: Active

Event Title: Design/Operational Life Is Inadequate

Type: Risk Internal Programmatic Category: SRR

Assess. Element: 4.0 **Title:** Safety In Design

Responsible Org: SRR-DA - Design Authority **Contact:** Steve Hall **Date Identified:** 1-Nov-08

Statement of Event: Currently a design life of 5 years has been selected based on an operational life of 2 years. The process is required to operate for longer than assumed. Major equipment (DMR, CRR Filter, pumps etc.) will begin to fail and require replacement.

Likelihood: Likely **Basis:** Perturbations in processing schedules, emergent conflicts in operational priorities etc., could extend the processing period past the life of the facility

Consequence / Benefit: Crisis **Basis:** Worst case would be a major vessel failure e.g. DMR, resulting in a shutdown for DMR removal, procurement, replacement, testing and restart. This would not impact the project, however is an operational vulnerability.

Most Significant Cost Impact ($K): 500 **Most Significant Schedule Impact:** > 1 Yr

Level: High **Event Trigger:**

Handling Strategy: Mitigate **Description:** Develop procurement specification to ensure a robust design of major equipment. During startup testing, focus on identification of adverse indications that may reduce life expectancy and correct whenever feasible., Steve Hall,

075-4 Perform a RAMI analysis to identify components that will require replacement during operations; life and include in design., Sergio Mazul,

075-5 Incorporate lessons learned from ARP/MCU project., Sergio Mazul,

075-6 Develop a layout strategy to minimize impact of extended inoperation., Sergio Mazul,

075-7 Obtain a listing of spare parts., Sergio Mazul,

075-8 Develop a PM Plan., Sergio Mazul,

075-9 Evaluate the use of the structural integrity program to monitor the health of the system., John Contardi,

Handling Strategy Action Items:

HS Implementation Cost ($K): 0 **Basis:** Within the current cost baseline.

HS Implementation Schedule: 0 **Basis:** No impact to the schedule baseline.

Other Handling Strategies:

Statement of Residual Risk: Even with a robust design and minimization of adverse operational impacts to the system, an operational vulnerability remains that a failure could occur by operating the system outside of the planned operational life. This does not impact the project and the vulnerability has been accepted by operations.

Residual Likelihood: **Basis:**

Residual Consequence: **Basis:**

Residual Risk Level: **Residual Impact Basis:**

Residual Cost Impact ($K): **Best Case** **Most Likely** **Worst Case**

Residual Schedule Impact:
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 075</th>
<th>Revision: 03</th>
<th>Last Date Evaluated: 4-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Consider as a risk for PBS-SR-0014 if FBSR is to be used for heel removal processing. Operational life is limited to 2 yrs after starting hot ops.
Risk / Opportunity Assessment Form

ID Number: 076
Revision: 04
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Aggressive Post Installation Testing Schedule
Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General
Responsible Org: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 8-Nov-06

Statement of Event: Project assumes that an aggressive post installation testing period is sufficient. This assumption is later proven incorrect as post installation testing is not able to be completed in accordance with this schedule.

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Basis: This is a new process at SRS and is likely to encounter problems during post installation testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence / Benefit</td>
<td>Basis: 1 month delay and additional cost to perform retesting and minor rework/procedure revisions.</td>
</tr>
</tbody>
</table>

Most Significant Cost Impact ($k): 100
Most Significant Schedule Impact: 1 Mth

Level: Moderate
Event Trigger:

Handling Strategy: Mitigate
Description: PS SSCs require a commensurate level of QA, these activities will normally include QA inspection, witnessing vendor validation/component testing/critical installation points, ensuring lessons learned are documented, reviewing and approving vendors QA, assuring SOW Engineering documents/inspection and examination procedures/startup procedures/SOW testing plans and procedures are statused 1 or 5. Additionally: assure that the validation test lessons learned are incorporated into the FBSR design; develop and issue project specific QA Plan. Assign startup engineers/operators to Idaho startup.

Handling Strategy Action Items:

- **076-3** Assure that the validation test lessons learned are incorporated into the FBSR design... Steve Brown,
- **076-5** Ensure scope and schedule for testing are emphasized, adequately planned, and managed to support an aggressive schedule... Steve Hall,
- **076-6** Assign startup engineers/operators to gain experience during Idaho startup... Jon Lunn.

H8 Implementation Cost ($K): 0
Basis: Within the current baseline.

H8 Implementation Schedule: 0
Basis: No schedule impact.

Other Handling Strategies:

Statement of Residual Risk: Even with inspection and verification, other elements may contribute to hampering installation testing.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis: The likelihood is reduced and potential wiring and instrumentation problems have been eliminated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis: Minor rework is required</td>
</tr>
</tbody>
</table>

Residual Risk Level: Low

<table>
<thead>
<tr>
<th>Residual Cost Impact ($k)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact</th>
<th>0</th>
<th>1 Wk</th>
<th>2 Wks</th>
</tr>
</thead>
</table>

Residual Impact Basis: Worst Case: Some rework is required
Most Likely Case: Minor rework is required

Impacted Scope of Work:

<table>
<thead>
<tr>
<th>Evaluation Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Event Comments:</th>
</tr>
</thead>
</table>
Risk / Opportunity Assessment Form

ID Number: 082
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title
Organic Carries Over to Product Storage Tank

Type: Risk
Category: SRR

Assess. Element: 4.0
Title: Safety in Design

Responsible Org: SRR-DA - Design Authority
Contact: Steve Hall
Date Identified: 22-Jan-07

Statement of Event
During normal operating conditions, organics will be destroyed by steam reforming to within acceptable limits for transfer of Product Storage Tank contents to Tank Farm receipt tank. If it is possible that during off-normal operating conditions a portion of organics is not destroyed and could be transferred back to the Tank Farm, this event would have to be prevented.

Likelihood:
Unlikely

Basis: It is unlikely that this will occur as the FBSR includes process controls for temperature and upset conditions to ensure the feed is treated. A credited Administrative Control (i.e., Product Validation Program) is required because one potential event could challenge the initial conditions assumed in the current CSTF DSA and is identified in the Hazard Evaluation tables by placing (SC) after the listed control. The credited Administrative Control is required to protect the CSTF DSA requirements (i.e., 5% trace organics), which is required for tank detonation/deflagration events. The credited Administrative Control will ensure that the FBSR product be validated to protect the CSTF DSA requirements (i.e., 5% trace organics), prior to the transfer of the Product Storage Tank contents to a Tank Farm receipt tank. The Product Validation Program will be designated as a Specific Administrative Control (SAC). Sample capability will be provided to the Product Dissolution Tank or Product Storage Tank for sampling of the redissolved product stream following a process upset prior to transfer to the HTF Receipt Tank.

Consequence / Benefit:
Significant

Basis: If it is possible that during off-normal operating conditions a portion of organics is not destroyed and could be transferred back to the Tank Farm, additional scope, possibly including Safety Class controls, would be added to the project.

Most Significant Cost Impact ($k): 1,500
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Event Trigger:

Handling Strategy: Avoid

Description: Provide a design constraint to the vendor at initial design for preventing organics from entering the PDT. Ensure the feature meets our needs during design review process. Provide sampling recycle capability.

Handling Strategy Action Items:
- 082-4 Ensure this event is considered in CHA. (complete), , , Steve Hall,
- 082-5 Establish a disposition path (including sampling and recycle) for product material that may not meet Tank Farm transfer requirements, , , Steve Brown,

HS Implementation Cost ($K):
1000
Basis: Cost to provide recycle capability.

HS Implementation Schedule:
0
Basis: Specification in progress, no impact to project schedule.

Other Handling Strategies:

Statement of Residual Risk:

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
<th>Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence:</td>
<td>Basis:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level:</th>
<th>Residual Impact Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Cost Impact ($K):</td>
<td>Best Case</td>
</tr>
<tr>
<td>Residual Schedule Impact:</td>
<td></td>
</tr>
</tbody>
</table>

Impacted Scope of Work:
<table>
<thead>
<tr>
<th>Risk / Opportunity Assessment Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Number: 082</td>
</tr>
<tr>
<td>Revision: 02</td>
</tr>
<tr>
<td>Last Date Evaluated: 4-Oct-10</td>
</tr>
<tr>
<td>Status: Active</td>
</tr>
</tbody>
</table>

| Evaluation Comments: |
| Event Comments: |
Risk / Opportunity Assessment Form

Event Title: DWPF Processing Impacted by FBSR Product

Type: Risk Internal Technical

Category: SRR

Assess. Element: 1.3

Title: Transfer Product to Receipt Tank

Responsible Org: SRR-ENG - Engineering

Contact: Steve Brown

Date Identified: 14-Feb-07

Statement of Event: The current baseline design is based on producing a product that can be slurried and sent to DWPF via the receipt tank. Pilot testing indicates that the product stream will contain carbon particles that are undesirable in the DWPF feed stream.

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Likely</th>
</tr>
</thead>
</table>

Consequence / Benefit: N/A

Basis: If this risk is realized, there will be no impact to the TTP Project. FBSR deployment will proceed, however, a Program impact will have been realized and strategies will have to be developed to process the tank contents and minimize the impact to DWPF operations.

Most Significant Cost Impact ($K): N/A

Most Significant Schedule Impact: N/A

Level: Event Trigger: Upon finalizing FBSR flowsheet, the wasteform coming out of FBSR is determined to be unacceptable for DWPF processing.

Handling Strategy: Mitigato

Description: The TTP Project will perform the following to assist mitigation of Program impacts: evaluate process for FBSR output in the final product stream; develop modeling for sludge batch with FBSR output; and require the vendor to perform elutriation and carryover calculations. (Reference PBS-SR-0014 Risks 034, 048, 083, 120, and 145).

Handling Strategy Action Items:
- 083-2 Evaluate process for FBSR output in the final product stream, , , , Steve Brown,
- 083-3 Develop modeling for sludge batch with FBSR output, , , , , Steve Brown,
- 083-5 Vendor to perform elutriation and carryover calculations, , , , Sergio Mazul,

HS Implementation Cost ($K): 0

Basis: No additional cost to project baseline.

HS Implementation Schedule: 0

Basis: Perform as part of the already scheduled preliminary design.

Other Handling Strategies:

Statement of Strategies: None, this is not a Project risk

Residual Likelihood: Basis:

Residual Consequence: Basis:

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Residual Impact Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>Most Likely</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference Program Risks 034, 048, 083, 120 and 145 within PBS-SR-0014 ROMP (Y-RAR-G-00022, Revision 6).
Risk / Opportunity Assessment Form

ID Number: 085
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title</th>
<th>Maintenance Requires Remote Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Risk</td>
</tr>
<tr>
<td>Internal Technical</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>SRR</td>
</tr>
<tr>
<td>Assess. Element</td>
<td>4.0</td>
</tr>
<tr>
<td>Title</td>
<td>Safety In Design</td>
</tr>
<tr>
<td>Responsible Org</td>
<td>SRR-DS - Design Services</td>
</tr>
<tr>
<td>Contact</td>
<td>Sergio Mazul</td>
</tr>
<tr>
<td>Date Identified</td>
<td>28-Feb-07</td>
</tr>
</tbody>
</table>

Statement of Event: The current design is based on a maintenance strategy that does not require remote operation provisions to maintain distance and shielding. System draining and flushing have been assumed adequate for decontamination prior to maintenance. It is determined that lowering of radiation rates to a suitable level for maintenance cannot be achieved by draining and flushing.

Likelihood: Likely
Basis: All items requiring maintenance have not been identified at this time.

Consequence / Benefit: Crisis
Basis: Schedule delay and cost to design and install features that provide for remote maintenance (up to and including an automated maintenance vehicle).

Most Significant Cost Impact ($k): 5,000
Most Significant Schedule Impact: 6 Mths

Level: High

Event Trigger: FBSR system design and maintainability requirements definition phase, MSA/ORR, Hot Operations.

Handling Strategy: Mitigate

Description: During design, assure all items requiring maintenance are designed and located for easy access, removal and replacement to reduce maintenance time. Vendor is required to provide input to shielding cals. Where possible provide shielding portals for access and pigging/hoisting points that take advantage of available distance and shielding. Determine if any equipment bails, hoist attachments, or camera views would be beneficial for some equipment maintenance activities. SRR operations and maintenance will be engaged with vendor in developing design features to allow cleaning to minimize dose.

Handling Strategy Action Items:

- 085-10: Conduct a TTT/SRR meeting to discuss assumptions used for dose calculations,, , , John Contardi,
- 085-11: Re-evaluate projected scale thickness and composition (Brad Mason/Henkel), , , John Contardi,
- 085-12: Develop remote strategy document and submit to SRR for review and approval (TTT), , , John Contardi,
- 085-13: Update RAMI to support evaluation for need for remote tooling and annual maintenance outage strategy. (Bourgeois), , , Sergio Mazul,
- 085-14: Evaluate the cost effectiveness of automated remote tooling and recommend path forward on further development of automated remote tooling, , , John Contardi,
- 085-15: Evaluate DMR & PSF decontamination approaches and develop DMR decontamination procedure, , , , Steve Brown,
- 085-4: Assure all items requiring maintenance are identified, , , Sergio Mazul,
- 085-5: Assure that the FBSR system design provides for easy access, minimal shielding removal, shielding port provisions, equipment removal and the means for replacement, , , Sergio Mazul,
- 085-6: Determine the maximum weight that can be handled by the existing monorail in the facility, , , Sergio Mazul,
- 085-8: Determine early in design what rad rates can be expected after draining, flushing and ventilation, , , Ken Fleming,
- 085-9: Utilize 3-D model to assure all items requiring maintenance are identified, , , Sergio Mazul,

HS Implementation Cost ($K): 16
Basis: Additional $16,000 will be provided to perform the monorail analysis study and the rad rate study (160 mhr)

HS Implementation Schedule: 0
Basis: This activity will be performed in parallel with vendor design activity and no project contingency or extension should be required.

Other Handling Strategies:

Statement of Residual Risk: Residual risk remains that remotability aspects will not be achieved without more control tools, vision, and overhead crane/hoist.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>Likelihood has been reduced slightly by implementation of action items.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Consequence</th>
<th>Crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>Schedule delay and additional cost</td>
</tr>
</tbody>
</table>
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 085</th>
<th>Revision: 02</th>
<th>Last Date Evaluated: 4-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>High</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>600</td>
<td>2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact:</th>
<th>1 Mth</th>
<th>2 Mths</th>
<th>4 Mths</th>
</tr>
</thead>
</table>

Residual Impact Basis: Worst Case: Schedule delay and additional cost up to and including an automated maintenance vehicle.
Most Likely Case: Schedule delay and additional cost
Best Case: Schedule delay and additional cost

Impacted Scope of Work: FBSR system design/ fab and 241-96H support systems needed for any remanability equipment operation.

Evaluation Comments:

Event Comments: Reference TIT Risks #FBSR 8 and FBSR 13.
Risk / Opportunity Assessment Form

ID Number: 087
Revision: 03
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: High Silica Content Creates a Processing Problem at 2H Evaporator

Type: Risk
Element: Technical
Category: SRR

Asses. Element: 1.3
Title: Transfer Product to Receipt Tank
Contact: Steve Brown
Date Identified: 26-Mar-07

Statement of Event: Preliminary results from Hazen Pilot Scale testing identified the potential to have high soluble silica (>1300 g/L) in the Tank Farm receipt tank. This content is much higher than anything processed to date in the 2H evaporator system which could cause significant scale build up in the evaporator at a faster rate. Even if material is sent to DWPF there is concern that the recycle returned to the 2H systems will be significantly higher in soluble silica.

Likelihood: Likely
Basis: SRNL evaluation on solids from Hazen Pilot scale testing showed that soluble silica in water is ~230 mg/L which could be even higher in alkaline environment of waste tank.

Consequence / Benefit: N/A
Basis: If this risk is realized, there will be no impact to the TTP Project. FBSR deployment will proceed, however, a Program impact will have been realized and strategies will have to be developed to process the tank contents and minimize the impact to 2H Evaporator operations.

Most Significant Cost Impact ($K): N/A
Most Significant Schedule Impact: N/A

Level:
Event Trigger:

Handling Strategy: Mitigate
Description: The TTP Project will perform the following to assist mitigation of Program impacts: perform evaluation to determine soluble silica expected in the Tank Farm receipt tank, evaluate impact to 2H evaporator system and determine is additional action is required to reduce/remove silica. (Reference PBS-SR-0014 Risks 116 and 367).

Handling Strategy Action Items:
- 087-1 Perform evaluation/test to determine soluble silica expected in the Tank Farm receipt tank, , , Steve Brown,
- 087-2 Evaluate impact to 2H evaporator system and determine if additional action is required to reduce/remove silica, , , Skip Wiggins,

HS Implementation Cost ($K): 0
Basis: Within existing cost baseline.

HS Implementation Schedule: 0
Basis: No impact to schedule baseline.

Other Handling Strategies:

Statement of Residual Risk: None, this is not a Project risk.

Residual Likelihood:
Basis:

Residual Consequence:
Basis:

Residual Risk Level:
Residual Impact Basis:

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

- Impacted Scope of Work:
- Evaluation Comments:
- Event Comments:
Risk / Opportunity Assessment Form

ID Number: 093
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title:</th>
<th>Accident Analysis Determines Additional Safety Controls are Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Risk Internal Technical</td>
</tr>
<tr>
<td>Category:</td>
<td>SRR</td>
</tr>
<tr>
<td>Assess. Element:</td>
<td>4.0</td>
</tr>
<tr>
<td>Title:</td>
<td>Safety In Design</td>
</tr>
<tr>
<td>Responsible Org:</td>
<td>SRR-DA - Design Authority</td>
</tr>
<tr>
<td>Contact:</td>
<td>Steve Hall</td>
</tr>
<tr>
<td>Date Identified:</td>
<td>16-Jun-08</td>
</tr>
</tbody>
</table>

Statement of Event: A preliminary CHAP has been issued for the FBSR. A risk exists that when updating the CHAP a need is identified to include additional safety controls in the design.

Likelihood:
- **Basis:** PCHAP has been issued

Consequence / Benefit:
- **Basis:** The worst case would be that controls are required. This redesign and additional fabrication requirements would increase the cost of the project and incur a schedule impact.

Most Significant Cost Impact ($K): 500
Most Significant Schedule Impact: 3 Mths

Level: Moderate
Event Trigger: Currently open; Close upon completion of CHAP.

Handling Strategy: Mitigate
Description: Specify materials as Quality Level 2 (equivalent to SS) during initial procurement to allow early procurement and avoid schedule delays. Pursue testing of DMR and PSF coal/product for combustion.

Handling Strategy Action Items:
- 093-1 Specify materials as Quality Level 2 (equivalent to SS) during initial procurement to allow early procurement and avoid schedule delays, Sergio Mazul,
- 093-2 Pursue testing of DMR and PSF coal/product for combustion, (complete), Garry Eide,

HS Implementation Cost ($K): 0
Basis: Within current cost baseline.

HS Implementation Schedule: 0
Basis: No impact on schedule baseline.

Other Handling Strategies:

Statement of Residual Risk: A risk remains that when updating the CHAP a need is identified to include additional safety controls in the design.

Residual Likelihood: Unlikely
Basis: PCHAP has been issued, however additional scenarios of coal dust explosion events are being analyzed.

Residual Consequence: Significant
Basis: Controls are required to combat coal dust hazards. These include: interlocks on dry material feed systems, safety significant PSF vessel etc. This redesign and additional fabrication requirements increases cost and incurs a schedule impact.

Residual Risk Level: Moderate
Residual Impact Basis: All Cases: Additional controls are required.

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 2 Wks | 3 Wks | 4 Wks |

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 095
Revision: 02
Last Date Evaluated: 4-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title:</th>
<th>Accumulation of Solids in WFT, PDT, and/or PST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Risk</td>
</tr>
<tr>
<td>Category:</td>
<td>SRR</td>
</tr>
<tr>
<td>Assess. Element:</td>
<td>4.0</td>
</tr>
<tr>
<td>Title:</td>
<td>Safety in Design</td>
</tr>
<tr>
<td>Responsible Org:</td>
<td>SRR-ENG - Engineering</td>
</tr>
<tr>
<td>Contact:</td>
<td>Steve Brown</td>
</tr>
<tr>
<td>Date Identified:</td>
<td>16-Jun-08</td>
</tr>
<tr>
<td>Statement of Event:</td>
<td>A slurry will be transferred from Tank 48 to the WFT. The WFT will be agitated to suspend the solids. The DMR will generate a solid carbonate product will be dissolved in the PDT. Water will be utilized to dissolve the soluble carbonate compounds in the product. Insoluble oxide compounds will be transferred as insoluble particles to the PST. The PST will be agitated to suspend insoluble particles. Insoluble solids accumulate in the WFT, PDT, and/or PST.</td>
</tr>
<tr>
<td>Likelihood:</td>
<td>Likely</td>
</tr>
<tr>
<td>Basis:</td>
<td>Solids are present in the T48 slurry and when the DMR product was dissolved during ESTD testing insoluble solids were present.</td>
</tr>
<tr>
<td>Consequence / Benefit:</td>
<td>Significant</td>
</tr>
<tr>
<td>Basis:</td>
<td>Solids will be present in the WFT, PST, & PDT. Lack of agitation will cause solids to settle out and resuspension of the solids may not be probable resulting in solids accumulation. Solids may then prevent transfer. Agitator would have to be replaced, including jumper.</td>
</tr>
<tr>
<td>Most Significant Cost Impact ($k):</td>
<td>1000</td>
</tr>
<tr>
<td>Most Significant Schedule Impact:</td>
<td>1 Mth</td>
</tr>
<tr>
<td>Level:</td>
<td>Moderate</td>
</tr>
<tr>
<td>Handling Strategy:</td>
<td>Avoid</td>
</tr>
<tr>
<td>Description:</td>
<td>Use mixing/agitation to suspend the insoluble and designing transfer systems capable of transferring slurmed solutions will avoid this risk.</td>
</tr>
</tbody>
</table>
| Handling Strategy Action Items: | 095-1 Perform evaluations to ensure that the WFT and PST agitators are capable of maintaining insoluble solids in suspension and capable of resuspending the insoluble solids, Sergio Mazul,
095-2 Perform evaluations to ensure that the PST is capable of maintaining insoluble solids in suspension and capable of resuspending the insoluble solids, Sergio Mazul,
095-3 Ensure through design that the WFT & PST pumps are capable of transferring the slurried material, Sergio Mazul,
095-4 Ensure that radiological calculations take into account a suspended slurry, as well as a settled slurry, Ken Fleming, |
| HS Implementation Cost ($k): | 0 |
| Basis: | Cost is within existing baseline. |
| HS Implementation Schedule: | 0 |
| Basis: | No schedule impact. |
| Other Handling Strategies: | Statement of Residual Risk: Risk has been avoided. |

Residual Likelihood:
Residual Consequence:
Residual Risk Level:
Residual Impact Basis:

<table>
<thead>
<tr>
<th>Residual Cost Impact ($k):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

<table>
<thead>
<tr>
<th>Impacted Scope of Work:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation Comments:</td>
<td></td>
</tr>
<tr>
<td>Event Comments:</td>
<td></td>
</tr>
</tbody>
</table>
Risk / Opportunity Assessment Form

ID Number: 098
Revision: 03
Last Date Evaluated: 4-Oct-10
Status: Active

Event Title: Sampling System Does not Perform as Designed

Type: Risk
Category: SRR

Assess. Element: 4.0
Title: Safety in Design

Responsible Org.: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 15-Apr-09

Statement of Event: The FBSR feed and product streams are composed of a slurry of liquids and solids. A risk exists that, when designed, the FBSR sampling system requires extensive troubleshooting/modifications during startup and operations.

Likelihood: Likely
Basis: Tank Farm previous experience with "flow through" type samplers has proven that troubleshooting is required.

Consequence / Benefit: Crisis
Basis: The sampling system will be unable to demonstrate compliance with the Tank Farm and downstream facilities receipt criteria. Extensive modifications will result in additional cost and schedule delays. Worst case would be 2 new samplers. Cost and schedule impact.

Most Significant Cost Impact ($k): 500
Most Significant Schedule Impact: 4 Mths

Level: High
Event Trigger:

Handling Strategy: Avoid

Description: Revise the current Sampling Strategy for the FBSR system (Ref. LWO-SPT-2008-00116) to confirm sampling needs for the FBSR system and tank farm receipt tank early in the preliminary design phase. Prepare a Sampling Plan, obtain concurrence from operations and incorporate into the projects TR&C. During the sampling design development ensure buy-in from maintenance and operations. Risk is avoided.

Handling Strategy Action Items:
- 098-1 Identify and define sample points early for the FBSR system within an approved sampling plan. (complete) , , Steve Brown,
- 098-2 Issue a revised TR&C to provide sampling design input. (complete) , , Steve Hall,
- 098-3 Revise SOW to identify specific sampling point locations on the FBSR. , , Steve Hall,
- 098-4 Determine Sampler Unit(s) location and confinement requirements. (complete) , , Steve Hall,
- 098-5 Design a new Sampler for every stream. , , Sergio Mazul,
- 098-6 Design Sampler(s) for maintenance access easy assembly/disassembly. , , Sergio Mazul,
- 098-8 Review lessons learned from previous Tank Farm sampler applications and incorporate into design. , , Sergio Mazul,

HS Implementation Cost ($k): 0
Basis: Within current cost baseline.

HS Implementation Schedule: 0
Basis: No impact to schedule baseline.

Other Handling Strategies:

Statement of Residual Risk: Risk has been avoided.

Residual Likelihood:

Residual Consequence:

Residual Risk Level:

<table>
<thead>
<tr>
<th>Residual Cost Impact ($k)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 100 Revision: 02 Last Date Evaluated: 4-Oct-10 Status: Active

Event Title: WFT and PST Cooling is Inadequate
Type: Risk Internal Technical
Category: SRR
Assess. Element: 4.0 Title: Safety In Design

Responsible Org: SRR-DSS - Design Services Contact: Sergio Mazul Date Identified: 15-Apr-09

Statement of Event: WFT temperature required to be kept <35C to minimize benzene generation, PST temperature limits required to meet HTF requirements. A risk exists that the existing tank cooling is inadequate to maintain required temperatures resulting in extended material residence time in tanks, impacting facility attainment.

Likelihood: Unlikely Basis: Those 2 tanks are currently in use by ARP. Cooling is currently in use on both tanks and is adequate for temperature service comparable to future FBS requirements. Design of present cooling has significant spare capacity, however, grid will introduce heat into the system.

Consequence / Benefit: Significant Basis: Failure to achieve attainment will result in a longer processing period for Tank 48 contents. If detected during testing and cold runs it would result in a delay to Project completion and additional cost for design of control system.

Most Significant Cost Impact ($K): 200 Most Significant Schedule Impact: 1 Mth

Level: Moderate Event Trigger:

Handling Strategy: Avoid Description: Perform analysis during preliminary design to confirm adequacy of tank cooling capacity and cooling control system.

Handling Strategy Action Items:
100-1 Update analysis during final design to confirm adequacy of tank cooling capacity and cooling control system (to include the impacts of auger grinder heat generation).

HS Implementation Cost ($K): 0 Basis: Within current project cost baseline.

HS Implementation Schedule: 0 Basis: No impact to project baseline schedule.

Other Handling Strategies:

Statement of Residual Risk: Risk is avoided by design of cooling capacity.

Residual Likelihood: Basis:
Residual Consequence: Basis:

Residual Risk Level: Residual Impact Basis:

Residual Cost Impact ($K): Best Case Most Likely Worst Case 0 0 0
Residual Schedule Impact: 0 0 0

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 102
Revision: 03
Last Date Evaluated: 6-Oct-10
Status: Active

Event Title: DWPF Particle Size Requirements Not Met

Type: Risk
Category: SRR

Assess. Element: 1.3
Title: Transfer Product to Receipt Tank

Responsible Org: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 15-Apr-09

Statement of Event: DWPF WAC (X-SD-G-00008, 5.4.15) requires that new product streams into DWPF have maximum particle size of 80 mesh or less. A risk exists that a methodology cannot be found to reduce particle size to comply with WAC, making product unacceptable as feed to DWPF.

Likelihood: Likely
Basis: Grinder vendor demonstrations showed product can be size reduced but had product sizes greater than 80 mesh. 100% size criteria is difficult to meet.

Consequence / Benefit: Crisis
Basis: A new unit operation will have to be designed and installed to reduce solid product to comply with WAC. After installation, the process will be restarted. Cost of design, procurement, installation, testing of new unit operation.

Most Significant Cost Impact ($K): 1000
Most Significant Schedule Impact: 6 Mths

Level: High
Event Trigger: During design and testing it is determined that DWPF particle size limitations cannot be met with the current configuration.

Handling Strategy: Mitigate
Description: Refine data on expected bauxite concentration, perform additional testing and develop a path forward early in project.

Handling Strategy Action Items:
- 102-1 Determine how much bauxite can be expected using analysis from Phase III ESTD testing, , , Tim Baughman,
- 102-2 Define grinder testing requirements (including durability testing), , , Steve Hall,
- 102-3 Stage grinder equipment and perform testing, , , Steve Hall,
- 102-5 Revise 100% size requirement from DWPF WAC, , , Steve Brown,
- 102-6 Evaluate the use of a Y-Gate strainer to allow out of specification material to be drummed, , , Steve Brown,
- 102-7 Develop a path forward for particle size reduction, , , Tim Baughman,
- 102-8 Evaluate the replacement of the CRR with a thermal oxidizer, , , John Contardi,

HS Implementation Cost ($K): 500
Basis: Cost for additional testing and evaluation.

HS Implementation Schedule: 0
Basis: No schedule impact.

Other Handling Strategies:

Statement of Residual Risk: A risk remains that particle size does not comply with DWPF WAC.

Residual Likelihood: Unlikely
Basis: Likelihood has been reduced by incorporating testing results and evaluation findings into FBSR design.

Residual Consequence: Crisis
Basis: Major unit operation must be added to the process, cost and schedule impact.

Residual Risk Level: High

Residual Impact Basis: Worst Case: Major unit operation must be added to the process, cost and schedule impact.

Residual Cost Impact ($K):
- Best Case: 300
- Most Likely: 500
- Worst Case: 1000

Residual Schedule Impact:
- Best Case: 2 Mths
- Most Likely: 3 Mths
- Worst Case: 6 Mths

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 36.
Risk / Opportunity Assessment Form

ID Number: 103
Revision: 03
Last Date Evaluated: 6-Oct-10
Status: Active

Event Title: Doorstops Are Not Available As Needed to Support Sampling Activities

Type: Risk
Sub-Type: Programmatic
Category: SRR

Assess. Element: 1.0
Title: Processing

Responsible Org: SRR-ENG
Engineering Contact: Steve Brown
Date Identified: 15-Apr-09

Statement of Event: After samples are taken, they will be housed in "Door Stops" for transportation. A risk exists that there are not sufficient doorstops available to support sampling needs and additional doorstops will have to be procured by the project.

Likelihood: Likely
Basis: LWO is now limited to the available supplies of Door Stops within LWO. Doorstops owned by SRNS would likely have to be purchased at additional expense.

Consequence / Benefit: Critical
Basis: The worst case would be that all 20 (estimated) doorstops would have to be purchased at a cost of $40K each. Procurement/Fabrication of doorstops will be a long lead item.

Most Significant Cost Impact ($K): 800
Most Significant Schedule Impact: 3 Mths

Level: High

Handling Strategy: Mitigate

Description: Perform identification of spare doorstops at SRS. Perform radiological dose estimate/calculation to determine shielding requirements for samples. Determine if the doorstops identified meet the radiological requirements. In parallel initiate Procurement Process to purchase acceptable spares identified from SRNS and initiate Procurement Process for fabrication of remainder of doorstops.

Handling Strategy Action Items:

- 103-1 Perform radiological dose estimate/calculation to determine shielding requirements for samples, . . . Ken Fleming,
- 103-2 Determine if the doorstops identified meet the radiological requirements, . . . Ken Fleming,
- 103-3 Ensure that shielded door stops are identified on long lead procurement list, . . . Steve Hall,

HS Implementation Cost ($K): 22
Basis: 40 hrs Operations to research and identify. 20 hrs RCO to perform radiological dose estimate/calculation. 80 hrs Design Engineering to write specification. 40 hrs Design Authority to review specification and radiological dose estimate/calculation. 40 hrs Procurement for procurement set up.

HS Implementation Schedule: 0
Basis: Work RCO and Operations in parallel, off critical path.

Other Handling Strategies:

Statement of Residual Risk: Doorstops may still be in short supply.

Residual Likelihood: Likely
Basis: Very Unlikely that 20 spare doorsteps will be found on site. Assume that 10 are located that are acceptable per the radiological dose estimate/calculation.

Residual Consequence: Marginal
Basis: Delay and cost. (cost from SRNS $10K per) (cost for new $20K per)

Residual Risk Level: Moderate
Residual Impact Basis: Best Case: 20 acceptable doorstops are found on site.
Most Likely Case: 10 acceptable doorstops are found onsite.
Worst Case: 0 acceptable doorstops are found onsite.

Residual Cost Impact ($K):

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K)</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>600</td>
<td>800</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

| Residual Schedule Impact | 2 Mths | 3 Mths |

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 104
Revision: 02
Last Date Evaluated: 6-Oct-10
Status: Active

Event Title:
SCDHEC Permitting Engineering Resources Are Not Available

<table>
<thead>
<tr>
<th>Type</th>
<th>External</th>
<th>Programmatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>SRR</td>
<td></td>
</tr>
</tbody>
</table>

Assess. Element: 3.0
Title: General

Responsible Org: SRR-ENV - Environmental
Contact: Rm Campbell
Date Identified: 5-May-00

Statement of Event:
Permits must be approved by SCDHEC to allow implementation of TTP. A risk exists that SCDHEC may not be able to provide necessary permits/approvals due to lack of manpower.

Likelihood:
- **Likely**
 - **Basis:** The SCDHEC Federal Facility Liaison has publicly stated regulatory support for SRS activities remain a high priority within the agency. SCDHEC has supported permit schedule in the past, however, South Carolina’s budget shortfall directly impacts SCDHEC Environmental Compliance staff and SCDHEC personnel have been advised of management’s decision to enforce a five-day furlough as a cost savings measure.

Consequence / Benefit:
- **Significant**
 - **Basis:** Delay in obtaining permits will result in schedule impacts.

Most Significant Cost Impact ($k): 0
Most Significant Schedule Impact: 6 Wks

Level:
- **Moderate**

Handling Strategy:
- **Mitigate**
 - **Description:** Actively engage SCDHEC in permitting process through information meetings, site visits, etc. Ensure local SCDHEC office is involved in discussions with SCDHEC permit engineer in Columbia. Ensure all branches of SCDHEC are involved during permit discussions.

Handling Strategy Action Items:
1. **104.1** Actively engage SCDHEC in permitting process at beginning of Tank 48 project through information meetings, site visits, etc.
 - Rm Campbell,
2. **104.2** Ensure local SCDHEC office is involved in discussions with SCDHEC permit engineer in Columbia and all branches of SCDHEC are involved during permit discussions.
 - Rm Campbell,

HS Implementation Cost ($k):
- **0**
 - **Basis:** Handling strategy is part of normal communications and therefore no additional costs are incurred.

HS Implementation Schedule:
- **0**
 - **Basis:** Handling strategy is part of normal communications and no schedule impacts are incurred.

Other Handling Strategies:

Statement of Residual Risk:
Even with advance planning and coordination with SCDHEC, delay in obtaining permits and schedule impacts can still occur.

Residual Likelihood:
- **Unlikely**
 - **Basis:** Likelihood has been reduced slightly, but not to very unlikely.

Residual Consequence:
- **Significant**
 - **Basis:** Impact has been reduced by advance planning and coordination with SCDHEC, however, delay in obtaining permits and schedule impacts can still occur.

Residual Risk Level:
- **Moderate**
 - **Residual Impact Basis:** Worst Case: Delay in obtaining permits and schedule impact.

Residual Cost Impact ($k):
- **Best Case:** 0
- **Most Likely:** 0
- **Worst Case:** 0

Residual Schedule Impact:
- **1 Wk**
- **2 Wks**
- **4 Wks**

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 108
Revision: 01
Last Date Evaluated: 12-Oct-10
Status: Active

Event Title: SCDHEC IWT Construction Permit Issuance Is Delayed

Type: Risk
Category: SRR

Assess. Element: 3.0
Title: General

Responsible Org.:
Contact: Don McWhorter
Date Identified: 18-Dec-09

Statement of Event: Currently it is assumed that the Industrial Wastewater Treatment (IWT) construction Permit will be approved by SCDHEC for TTP deployment. A risk exists that the permit issuance is not accepted and delayed by SCDHEC. The project will have to revise and resubmit the permit package for SCDHEC approval. This will delay CD-3 and construction will not begin until a permit is obtained.

Likelihood: Likely
Basis: Current assumption that IWT construction permit will be approved by SCDHEC is based Hazen engineering scale testing, and inputs for a full-scale unit are not available to verify the assumption. A risk exists for the full-scale unit not meet the SCDHEC requirements for an IWT construction permit approval.

Consequence / Benefit: Crisis
Basis: A delay to the project schedule will occur while the permit package and application is revised and resubmitted and subsequently re-reviewed and approved by SCDHEC. A worse case is estimated at 6 mths. An additional cost of 200K

Most Significant Cost Impact ($K): 200
Most Significant Schedule Impact: 6 Mths

Level: High
Event Trigger: After submittal of IWT construction permit for approval by SCDHEC this risk could occur. After issuance of IWT construction permit, this risk can no longer occur.

Handling Strategy: Mitigate
Description: Develop input data and permit package to ensure it will comply the SCDHEC requirements for a construction permit application.

Handling Strategy Action Items:
- 108-1 Include specific direction to vendor to develop data and input for IWT permit package to ensure it will meet the regulatory requirements, , Sergio Mazul,
- 108-2 Review data and inputs to ensure SCDHEC requirements for a permit application are met, , Chris Johnson,

HS Implementation Cost ($K): 0
Basis: The cost for preparing the permit package is already in the baseline cost estimate.

HS Implementation Schedule: 0
Basis: The schedule for preparing this permit package can be brought forward without impacting the overall schedule.

Other Handling Strategies:

Statement of Residual Risk: Permit package may still be determined not adequate to meet SCDHEC requirements, and permit package and application is revised and resubmitted, however, the schedule delay has been avoided by performing the determination early.

Residual Likelihood: Likely
Basis: Current information from the Hazen testing indicates the IWT construction permit package for a full-scale unit will meet the SCDHEC requirements.

Residual Consequence: Critical
Basis: Cost to revise and re-submit a IWT construction permit.

Residual Risk Level: High

Residual Cost Impact ($K):
- **Best Case:** 50
- **Most Likely:** 50
- **Worst Case:** 50

Residual Schedule Impact:
- **1 Mth**
- **2 Mths**
- **3 Mths**

Residual Impact Basis: Additional cost of revising and resubmitting a IWT construction permit package (Best Case: 1 mths schedule and $50K cost; Most Likely: 2 mths and $50K; Worst Case: 3 mths and $50K).

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 109
Revision: 01
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title: Non-Rad (SCDHEC-BAQ (Bureau of Air Quality) Construction Permit is Delayed

Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General

Responsible Org.: -
Contact: Don McWhorter
Date Identified: 18-Dec-09

Statement of Event: Currently it is assumed that the non-rad construction Permit will be approved by SCDHEC for TTP deployment. A risk exists that when the calculated non-rad emissions are finalized, there is a threshold limitation that has been exceeded. The project will have to include mitigating modifications to meet the threshold limits and re-develop the permit application. This will delay CD-3 and construction not begun until a permit is obtained.

Likelihood:	Likely
Basis:	Current information from Hazen (2006 Hazen testing) indicates the particulate matter (PM) threshold may be exceeded with a full-scale unit based on Phase 2/3 testing.

Consequence / Benefit:	Crisis
Basis:	A delay to the project schedule will occur to design and incorporate mitigating modifications, resubmit permit application by SRR and subsequently reviewed and approved by SCDHEC. A worse case is estimated at 6 mths. An additional cost of 250K.

| Most Significant Cost Impact ($K): | 50

| Most Significant Schedule Impact: | 6 Mths

Level:	High
Event Trigger:	Risk may occur after submittal of non-rad construction permit to SCDHEC. Risk will not occur after non-rad construction permit has been approved.

Handling Strategy:	Mitigate
Description:	Develop data and perform calculation to determine emission levels of unit in sufficient time to incorporate mitigating modifications in design to ensure permit thresholds will not be exceeded.

Handling Strategy Action Items:
- 109.3 Review inputs and perform non-rad air emission calculation to ensure PM threshold limit is met, Chris Johnson,
- 109.1 Include specific direction to vendor to develop data for non-rad air emissions calculation input to ensure the design will meet the regulatory threshold limit for PM, Sergio Mazul,

| HS Implementation Cost ($K): | 0
| HS Implementation Schedule: | 0

| Basis: | The cost for performing this evaluation is already in the baseline cost estimate.

| Basis: | The schedule for performing this evaluation can be brought forward without impacting the overall schedule.

Other Handling Strategies:

Statement of Residual Risk: Design may still be determined not adequate to meet PM threshold limit, permit application is revised and resubmitted, and modifications are required to maintain process operation below the threshold limits; however, the schedule delay has been avoided by performing the determination early.

Residual Likelihood:	Likely
Basis:	Current information from Hazen (2006 Hazen testing) indicates the particulate matter (PM) threshold may be exceeded with a full-scale unit based on Phase 2/3 test data.

Residual Consequence:	Negligible
Basis:	Cost to develop and submit a non-Rad construction permit.

Residual Risk Level:	Low
Residual Impact Basis:	All cases: no schedule impact, but additional cost of preparing and submitting a non-Rad BAQ construction permit request, and cost of modifications (modifications: Worst Case - $50k; Most Likely - $25k; Best case - $10k)

| Residual Cost Impact ($K): | Best Case: 10
|-----------------------------| Most Likely: 25
| Worst Case: 50 |

| Residual Schedule Impact: | 0
|---------------------------| 0
| 0 |

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 111
Revision: 01
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title:
Design Changes are Required to Achieve Performance Goals

Type:
- Risk
- Technical

Assess. Element:
4.0

Title:
Safety in Design

Responsible Org:
SRR-DA - Design Authority

Contact:
Chris Johnson

Date Identified:
18-Dec-09

Statement of Event:
As design matures, analysis indicates operational events which result in consequences determined by management to be unacceptable for recovery timeframe, cost, and/or personnel exposure. Examples may include process upsets which cause necessary removal of the DMR and/or CRR bad material. It may be desirable to reduce the risk of these operational events with increased equipment reliability and/or redundancy. This results in additional scope and cost.

Likelihood:
Likely

Consequence / Benefit:
Critical

- **Basis:** If this risk is realized a scope could be added to the project which may include designing support systems with additional redundancies. Cost and schedule delays.

Most Significant Cost Impact ($K):
500

Most Significant Schedule Impact:
3 Mths

Level:
High

- **Event Trigger:** Additional scope will not be added after the completion of CD-2 estimate as the design will be mature enough to close this risk.

Handling Strategy:
Mitigate

- **Description:** Request information from TTT on process upsets and impacts to operational recovery. Perform evaluations of site equipment reliability and provide recommendations to management. The residual risk would be an operational vulnerability if the controls/redundancies either cannot be provided or do not fully resolve the problem.

Handling Strategy Action Items:
111-1 Develop and submit questions to TTT, , , Gerry Eide,
111-2 Evaluate support systems and evaluate the process response to loss of support system events during preliminary and final design to ensure process control design supports acceptable recovery from loss of support system events, , , Steve Hall,
111-3 Document recommendations in path forward/white paper, , , , Steve Hall,
111-4 Evaluate upset condition report (from vendor-SOW Section 3.3.9.5.E), , , , Steve Hall,
111-5 Advise project management if actions 3 or 4 concludes that the process controls cannot be designed to avoid unacceptable recovery conditions, , , , Steve Hall,

HS Implementation Cost ($K):
0

- **Basis:** Handling strategy is part of the existing baseline. No additional costs are incurred.

HS Implementation Schedule:
0

- **Basis:** No impact to the current schedule baseline.

Other Handling Strategies:

Statement of Residual Risk:
The residual risk would be an operational vulnerability if the controls/redundancies either cannot be provided or do not fully resolve the problem.

Residual Likelihood:

Residual Consequence:

Residual Risk Level:

Residual Cost Impact ($K):

- **Best Case**
- **Most Likely**
- **Worst Case**

Residual Schedule Impact:

Impacted Scope of Work:
<table>
<thead>
<tr>
<th>Risk / Opportunity Assessment Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Number: 111</td>
</tr>
<tr>
<td>Revision: 01</td>
</tr>
<tr>
<td>Last Date Evaluated: 11-Oct-10</td>
</tr>
<tr>
<td>Status: Active</td>
</tr>
</tbody>
</table>

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 112
Revision: 01
Last Date Evaluated: 11-Oct-10
Status: Active

Event Title: During Startup Additional Samples are Required

Type: Risk
Category: SRR

Assess. Element: 1.0
Title: Processing

Responsible Org: SRR-ENG - Engineering
Contact: Steve Brown
Date Identified: 18-Dec-09

Statement of Event: The PDT solution must be characterized to ensure downstream compliance. The PDT product composition characterization baseline is planned to be based on 7 sample & hold samples. A risk exists that additional samples are required to validate the process during startup.

Likelihood: Likely
Basis: Typically 20 sample and hold samples are required to establish a process characterization baseline.

Consequence / Benefit: Crisis
Basis: The worst case consequence would result in up to 30 week delay with an additional cost of $100K

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 30 Wks

Level: High
Event Trigger: Risk may be realized upon startup of facility. After turnover to operations risk is closed. For operational vulnerability refer to risk 003.

Handling Strategy: Mitigate
Description: Evaluate statistically the need for more than 7 samples based on previous operational experience with MCU. Develop additional capabilities in F-Area Lab.

Handling Strategy Action Items:
- 112-1 Evaluate statistically the need for more than 7 samples based on previous operational experience with MCU, .., Steve Brown,
- 112-2 Evaluate F-Lab (772-F) and/or DWPF Lab capability to process FBSR samples, .., Steve Brown,

HS Implementation Cost ($K): TBD
Basis: Developing F-Lab capabilities may be funded by other than this project.

HS Implementation Schedule: 0
Basis: Within current baseline schedule

Other Handling Strategies:

Statement of Residual Risk: A risk remains that additional samples may be required.

Residual Likelihood: Likely
Basis: It remains as likely that additional samples are required.

Residual Consequence: Significant
Basis: 20 samples are required, some schedule relief is gained by using F-Area Lab

Residual Risk Level: Moderate

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>25</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Residual Schedule Impact:</td>
<td>0</td>
<td>1Mths</td>
<td>2 Mths</td>
</tr>
</tbody>
</table>

Residual Impact Basis: Worst case: 20 samples are required, some schedule relief is gained by using F-Area Lab

Most Likely Case: Additional samples are required some relief using F-Area Lab

Best Case: Some additional samples required and F-Area Lab can accommodate their analysis.

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Risk / Opportunity Assessment Form

ID Number: 117
Revision: 01
Last Date Evaluated: 12-Oct-10
Status: Active

Event Title: Additional Project Reviews are Required

Type: Risk
Category: DOE
Assess. Element: 3.0
Title: General

Responsible Org: SRR-PM - Project Manager
Contact: Jon Lunn
Date Identified: 2-Jun-10

Statement of Event: The TTP Project schedule has activities built in for the project reviews normally associated with a capital asset project under DOE O 413.3A. A risk exists that additional reviews/hold points are imposed (e.g. by DOE-HQ, OECM etc.).

Likelihood: Likely
Basis: This is likely due to the TTP Project being a high visibility project within DOE.

Consequence / Benefit: Critical
Basis: Assuming three additional reviews each impacting the project schedule by up to one month with an additional cost of $100K to support each review.

Most Significant Cost Impact ($K): 300
Most Significant Schedule Impact: 3 Mths

Level: High
Event Trigger: Currently open; closed upon completion of ORR

Handling Strategy: Accept
Description: There is no effective handling strategy that can be employed to mitigate this risk. It is outside the control of the Project Team. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

Handling Strategy Action Items:

HS Implementation Cost ($K):
HS Implementation Schedule:

Other Handling Strategies:

Statement of Residual Risk: A risk remains that additional reviews may be imposed by the DOE. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

Residual Likelihood: Likely
Basis: This is likely due to the TTP Project being a high visibility project within DOE.

Residual Consequence: Critical
Basis: Three additional reviews each impacting the project schedule by up to one month with an additional cost of $100K to support each review.

Residual Risk Level: High

Residual Cost Impact ($K):
- **Best Case:** 100
- **Most Likely:** 200
- **Worst Case:** 300

Residual Schedule Impact:
- **1 Mth:** Best Case
- **2 Mths:** Most Likely
- **3 Mths:** Worst Case

Residual Impact Basis: Worst Case: Three additional reviews each impacting the project schedule by up to one month with an additional cost of $100K to support each review.

Most Likely Case: Two additional reviews each impacting the project schedule by up to one month with an additional cost of $100K to support each review.

Best Case: One additional review impacting the project schedule by up to one month with an additional cost of $100K.

Impacted Scope of Work:

Evaluation Comments:

Event Comments: If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.
Risk / Opportunity Assessment Form

ID Number: 118
Revision: 01
Last Date Evaluated: 12-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>Event Title: Legacy Costs Increase</th>
</tr>
</thead>
</table>
| Type: Risk
External | Programmatic |
| Category: DOE |
| Assess. Element: 3.0
Title: General |
| Responsible Org: SRR-PM - Project Manager
Contact: Jon Lunn
Date Identified: 10-Jun-10 |

Statement of Event: The current estimated pension costs are based on existing data which is evaluated during the year and fixed annually. These provisional estimates are the basis for estimating legacy costs within the TTP Project. A risk exists that actual legacy costs are higher than estimated, creating a funding shortfall for the TTP Project.

- **Likelihood:** Likely
 Basis: Pension costs are related to the stock market indices which do fluctuate.

- **Consequence / Benefit:** Crisis
 Basis: A worst case would be that pension costs rise to the previously recorded high, which could add up to $8M to the cost of the TTP Project.

- **Most Significant Cost Impact ($K):** 8,000
 Most Significant Schedule Impact: 0

Level: High
Event Trigger: Currently open, Close upon completion of project.

Handling Strategy: Accept
Description: There are no strategies to control the fluctuations in Legacy costs. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

Handling Strategy Action Items:

HS Implementation Cost ($K):
HS Implementation Schedule:

Other Handling Strategies:

Statement of Residual Risk: A risk remains that actual legacy costs are higher than estimated, creating a funding shortfall for the TTP Project. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

- **Residual Likelihood:** Likely
 Basis: Pension costs are related to the stock market indices which do fluctuate.

- **Residual Consequence:** Crisis
 Basis: A worst case would be that pension costs rise to the previously recorded high, which could add up to $8M to the cost of the TTP Project.

Residual Risk Level: High
Residual Impact Basis: Worst Case: Pension costs rise to the previously recorded high, which could add up to $8M to the cost of the TTP Project.
Most Likely Case: Pension costs rise, which add up to $4M to the cost of the TTP Project.
Best Case: Pension costs rise, which add up to $2M to the cost of the TTP Project.

- **Residual Cost Impact ($K):**
 Best Case: 2,000
 Most Likely: 4,000
 Worst Case: 8,000

- **Residual Schedule Impact:**
 0

Evaluation Comments:

Event Comments: If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.
Risk / Opportunity Assessment Form

ID Number: 119
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Materials Pricing Increases Vendor Costs

<table>
<thead>
<tr>
<th>Type:</th>
<th>Risk</th>
<th>External</th>
<th>Programmatic</th>
<th>Category: SRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess. Element:</td>
<td>3.0</td>
<td>Title: General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible Org:</td>
<td>SRR-PM - Project Manager</td>
<td>Contact: Jon Lunn</td>
<td>Date Identified: 8-Sep-10</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Event: The TTP Project baseline includes vendor estimated cost of materials and an allowance for standard escalation. A risk exists that high worldwide demand for materials decrease availability (may even force unique mill runs for specialty materials etc.). The result would be Vendor subcontractors and suppliers estimates being received that exceed the budgeted amounts and schedule durations. Schedule impacts and costs that exceed the estimate and escalation assumed in the baseline.

Likelihood: Unlikely

Consequence / Benefit: Crisis
Basis: Cost increases were estimated at a worse case of $1.5M and a delay of up to 2 months (Reference TTT Risk #5)

Most Significant Cost Impact ($K): 1,500
Most Significant Schedule Impact: 2 Mths

Level: High
Event Trigger: Currently open; Close upon completion of Vendor acquisition of materials.

Handling Strategy: Mitigate
Description: TTT to identify materials of construction early and seek early SRR approval to enable procurement. A LL Plan is being developed by TTT to allow early ordering of materials. TTT will continue to monitor material availability/pricing and make adjustments to estimates as necessary

Handling Strategy Action Items:

HS Implementation Cost ($K): 0
Basis: Within current cost baseline.

HS Implementation Schedule: 0
Basis: No impact to schedule.

Other Handling Strategies:

Statement of Residual Risk: A risk remains that materials supply impact is realized and pricing escalates.

Residual Likelihood: Unlikely

Residual Consequence: Critical
Basis: Prices increase supply interruptions occur and alloy materials require a special mill run.

Residual Risk Level: Moderate

Residual Cost Impact ($K):
- **Best Case:** 0
- **Most Likely:** 750
- **Worst Case:** 1,500

Residual Schedule Impact:
- **1 Mth**
- **2 Mths**

Residual Impact Basis: Worst Case: Prices increase supply interruptions occur and alloy materials require a special mill run.
Most Likely Case: Prices increase supply interruptions occur, however schedule float and escalation contingency accommodate the impact.

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Refer to Thor Treatment Technologies FBSR Risk Sheet #5.
<table>
<thead>
<tr>
<th>Event Title: DOE do not accept Procurement Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Risk Programmatic Category: DOE</td>
</tr>
<tr>
<td>Assess. Element: 3.0 Title: General</td>
</tr>
<tr>
<td>Responsible Org: SRR-PM - Project Manager</td>
</tr>
<tr>
<td>Contact: Jon Lunn Date Identified: 8-Sep-10</td>
</tr>
</tbody>
</table>

Statement of Event: A segmented procurement strategy has been approved by DOE (i.e., CD-2A/3A, CD-2B/3B and CD-3). A risk exists that DOE does not approve any changes to this strategy, procurements are not approved when required, and work cannot be released to TTT.

<table>
<thead>
<tr>
<th>Likelihood:</th>
<th>Unlikely</th>
<th>Basis: Based on discussions with DOE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence / Benefit:</td>
<td>Crisis</td>
<td>Basis: If work cannot be released an impact of up to 6 months could be realized.</td>
</tr>
</tbody>
</table>

Most Significant Cost Impact ($K): 0 Most Significant Schedule Impact: 6 Mths

<table>
<thead>
<tr>
<th>Level:</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling Strategy:</td>
<td>Mitigate</td>
</tr>
<tr>
<td>Description: SRR will meet regularly with DOE and provide update on any changes to procurement strategy.</td>
<td></td>
</tr>
</tbody>
</table>

HS Implementation Cost ($K):
- Basis: No additional cost.

HS Implementation Schedule:
- Basis: No impact to schedule.

Other Handling Strategies:
- **Statement of Residual Risk:** A risk remains that DOE does not approve any changes to this strategy, procurements are not approved when required, and work cannot be released to TTT. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency.

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
<th>Unlikely</th>
<th>Basis: Based on discussions with DOE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence:</td>
<td>Crisis</td>
<td>Basis: If work cannot be released an impact of up to 6 months could be realized.</td>
</tr>
</tbody>
</table>

Residual Risk Level: High

Residual Impact Basis:	Worst Case: Work cannot be released an impact of up to 6 months is realized.
-------------------------	Most Likely Case: Some work is not released an impact of up to 3 months is realized.
	Best Case: A minimal amount of work is not released an impact of up to 6 months is realized.

Residual Cost Impact ($K):
- Best Case: 0 Most Likely: 0 Most Likely: 0

Residual Schedule Impact:
- 1 Mth 3 Mths 6 Mths

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 16. If this risk is realized, a BCP will be developed to obtain additional funding from DOE contingency to compensate for the schedule delay.
Risk / Opportunity Assessment Form

ID Number: 122
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Testing of Auger Grinder Indicates Major Design Rework is Required

Type: Risk
Category: SRR
Assess. Element: 1.2.5
Title: Solids Handling

Responsible Org: SRR-DS - Design Services
Contact: Sergio Mazul
Date Identified: 8-Sep-10

Statement of Event: After fabrication, the Auger Grinder will be tested and the design finalized such that the module design can be finalized and module fabrication completed. A risk exists that during testing, a significant issue is discovered that results in having to re-design the Auger Grinder.

Likelihood: Likely
Basis: The Auger Grinder design will be similar to the unit currently used at the Hazon Research pilot plant; recent pilot testing runs have been successful, however the auger shaft was bent during one of the pilot tests.

Consequence / Benefit: Significant
Basis: Redesign of the Auger Grinder results in additional cost and schedule delay.

Most Significant Cost Impact ($K): 200
Most Significant Schedule Impact: 1 Mth

Level: Moderate
Event Trigger: Open on commencement of Auger Grinder testing; Close upon completion of Auger Grinder testing.

Handling Strategy: Mitigate
Description: TTT to evaluate the Tank 48 Phase 1 and 3 test results relative to Auger Grinder performance and incorporate lessons learned into design. TTT to monitor test results from IWTO Auger Grinder test and if necessary design modifications and use lessons learned in the Tank 48 Auger Grinder Design.

Handling Strategy Action Items:

122-1 TTT to evaluate the Tank 48 Phase 1 and 3 test results relative to Auger Grinder performance and incorporate lessons into design, , John Contardi,

122-2 TTT to monitor test results from IWTO Auger Grinder test and if necessary design modifications and use lessons learned in the Tank 48 Auger Grinder Design, , John Contardi,

HS Implementation Cost ($K): 0
HS Implementation Schedule: 0

Other Handling Strategies:

Statement of Residual Risk:

Residual Likelihood: Unlikely
Basis: Likelihood has been reduced though redesign and lessons learned from IWTO grinder testing.

Residual Consequence: Significant
Basis: Redesign of the Auger Grinder results in additional cost and schedule delay.

Residual Risk Level: Moderate

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 0 | 0 | 1 Mth |

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 17
Risk / Opportunity Assessment Form

ID Number: 123
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

| Event Title: | Design Comment Resolution Delays Design Completion
| Type: | Risk
| Internal | Technical
| Category: | SRR

Assess. Element: 3.0
Title: General

Responsible Org: SRR-PO - Project Owner
Contact: John Contardi
Date Identified: 8-Sep-10

Statement of Event: SRR will review TTT design and provide comments for formal disposition by resolution/incorporation. A risk exists that disposition of comments takes longer than planned based on both their complexity and the number being greater than anticipated.

Likelihood: Unlikely
Basis: TTT has experienced delays during the review, comment and approval process during the ESTD testing. These delays impacted schedule dates and eroded float in the schedule. Work-arounds were implemented to preserve milestones, but in Engineering, this will be very difficult to recover.

Consequence / Benefit: Significant
Basis: Delays in submittals, authorizations for procurement and etc., will result in schedule and cost impacts.

Most Significant Cost Impact ($K): 500
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Event Trigger: Open upon start of Task 3 review, Close upon successful completion of Task 3 review comment disposition.

Handling Strategy: Mitigate
Description: Provide resident personnel to socialize issues with TTT early and resolve prior to reviews. SRR to discuss comments with TTT to ensure all are clearly understood before disposition begins.

HS Implementation Cost ($K): 0
Basis: No additional cost.

HS Implementation Schedule: 0
Basis: No impact to schedule.

Other Handling Strategies:

<table>
<thead>
<tr>
<th>Handling Strategy Action Items:</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-1 Provide resident personnel to socialize issues with TTT early and resolve prior to reviews, , , Jon Lunn,</td>
</tr>
<tr>
<td>123-2 SRR to discuss comments with TTT to ensure all are clearly understood before disposition begins, , , John Contardi,</td>
</tr>
</tbody>
</table>

Statement of Residual Risk: A risk remains that disposition of comments takes longer than planned based on both their complexity and the number being greater than anticipated.

Residual Likelihood: Very Unlikely
Basis: Likelihood has been reduced.

Residual Consequence: Significant
Basis: Delays in submittals, authorizations for procurement and etc., will result in schedule and cost impacts.

Residual Risk Level: Low

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>300</td>
<td>500</td>
</tr>
</tbody>
</table>

Residual Schedule Impact: 2 Wks
Impact: 1 Mths
2 Mths

Residual Impact Basis: Worst Case: Delays in submittals, authorizations for procurement and etc., will result in schedule and cost impacts.

Most Likely Case: Some delay in submittals, authorizations for procurement and etc., will result in schedule and cost impacts.

Best Case: Minor delays in submittals, authorizations for procurement and etc., will result in minimal schedule and cost impacts.

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 10
Risk / Opportunity Assessment Form

ID Number: 124
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Process Optimization Continues After Flowsheets are Finalized

Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General

Responsible Org: SRR-PO - Project Owner
Contact: John Contardi
Date Identified: 9-Sep-10

Statement of Event:
After flowsheet finalization design and fabrication is intended to be completed without any major perturbations in the final process flow. A risk exists that as opportunities arise for optimization of the process, flowsheet changes are made that impact physical design.

Likelihood:
- **Basis:** Opportunities will be identified and although some can be exploited without impact to physical design, other may require varying degrees of design change.

Consequence / Benefit:
- **Crisis**
- **Basis:** Cost will increase and schedule will extend through incrementalizing small flowsheet/design changes. Larger changes could result in significant cost increases and schedule delays. The worst case would be the change from CRR to a catalytic thermal oxidizer.

Most Significant Cost Impact ($k): 3,000

Level: High
Event Trigger: Open upon finalizing Flowsheet Close upon completion of project

Handling Strategy: Avoid
Description: Assign a PEM responsible for approval of flowsheet changes and coordination with design. Install and exercise change control over the TTP Process Flowsheet.

Handling Strategy Action Items:
124.1 Assign a Project Engineering Manager (Complete) . , Jon Lunn,
124.2 Develop/Deploy change control process to control configuration of TTP Process Flowsheet . , John Contardi,

HS Implementation Cost ($k):
- **0**
- **Basis:** Within existing cost baseline.

HS Implementation Schedule:
- **0**
- **Basis:** No schedule impact.

Other Handling Strategies:

Statement of Residual Risk:
Optimization opportunities may still be identified, however they would be controlled through the change control process. Optimization may still occur, but utilization of the change control process will control will make these optimizations a project decision approved by SRR where schedule and available funding are critical factors in the approval process.

<table>
<thead>
<tr>
<th>Residual Likelihood</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence</td>
<td>Basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Risk Level</th>
<th>Residual Impact Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>Most Likely</td>
</tr>
</tbody>
</table>

Residual Schedule Impact:

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 23
Risk / Opportunity Assessment Form

Event Title: Numbering System Convention Changes
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

<table>
<thead>
<tr>
<th>ID Number: 125</th>
<th>Revision: 01</th>
<th>Last Date Evaluated: 13-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
</table>

Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General
Responsible Org: SRR-PO - Project Owner
Contact: John Contardi
Date Identified: 9-Sep-10

Statement of Event: SRS numbering convention and process for obtaining numbers for drawings, components etc., is not compatible with TTT practice. SRS CLI numbers must be assigned in blocks for use by TTT and existing system (interfaces) CLIs must be correctly obtained from Smartplant for use by TTT. A risk exists that errors occur during this process resulting in rework to drawings and documentation.

<table>
<thead>
<tr>
<th>Likelihood:</th>
<th>Unlikely</th>
<th>Basis: After completion of Task 2, it is unlikely that any tag changes will occur based on conformance to SRR "SHRINE" CLI tagging since the methodology and number sequences have already been established.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence / Benefit:</td>
<td>Significant</td>
<td>Basis: Worst case impact to rework documentation e.g. valve, instrument and equipment lists and P&IDs.</td>
</tr>
</tbody>
</table>

Most Significant Cost Impact ($K): 100
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Event Trigger: Currently open; Close upon completion and approval of detailed design.

Handling Strategy: Mitigate
Description: Develop and deploy a change control process.

Handling Strategy Action Items:
125-1 Develop and deploy a change control process... John Contardi,

<table>
<thead>
<tr>
<th>HS Implementation Cost ($K):</th>
<th>0</th>
<th>Basis: Cost within baseline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS Implementation Schedule:</td>
<td>0</td>
<td>Basis: No impact to schedule baseline.</td>
</tr>
</tbody>
</table>

Other Handling Strategies:

Statement of Residual Risk: A risk remains that errors occur during the drawing and CLI numbering process resulting in rework to drawings and documentation.

<table>
<thead>
<tr>
<th>Residual Likelihood:</th>
<th>Unlikely</th>
<th>Basis: After completion of Task 2, it is unlikely that any tag changes will occur based on conformance to SRR "SHRINE" CLI tagging since the methodology and number sequences have already been established.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Consequence:</td>
<td>Significant</td>
<td>Basis: Impact to rework documentation e.g. valve, instrument and equipment lists and P&IDs.</td>
</tr>
</tbody>
</table>

Residual Risk Level: Moderate
Residual Impact Basis: Worst Case: Rework documentation e.g. valve, instrument and equipment lists and P&IDs.
Most Likely Case: Some rework to documentation e.g. valve, instrument and equipment lists and P&IDs.
Best Case: Minor rework to documentation e.g. valve, instrument and equipment lists and P&IDs.

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K):</th>
<th>Best Case</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

| Residual Schedule Impact: | 2 Wks | 1 Mth | 2 Mth |

Impacted Scope of Work:

Event Comments: Reference TTT Risk # FBSR 38
Risk / Opportunity Assessment Form

ID Number: 126
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title:
Vendor Underestimates Complexity of SRS SOW Requirements

Type:
Risk
Internal
Technical
Category: SRR

Assess. Element:
3.0
Title: General

Responsible Org.:
SRR-PO - Project Owner
Contact: John Contardi
Date Identified: 9-Sep-10

Statement of Event:
When compared to industry standards and consensus codes, SOW imposes additional requirements and in certain cases more stringent requirements. A risk exists that the vendor underestimates the complexity of complying with these additional requirements. This risk may also be realized with sub-vendors to TTT (i.e., additional costs and/or reluctance to bid).

Likelihood:
Likely
Basis: Recent evaluation of the implementation of SOW requirements by the vendor for materials and welding has resulted in additional cost and schedule impacts.

Consequence / Benefit:
Crisis
Basis: Additional costs for rework, and additional/more detailed process steps not included in the initial vendor estimate.

Most Significant Cost Impact ($K): 2,500
Most Significant Schedule Impact: 6 Mths

Level:
High
Event Trigger: Currently open; Close upon completion and approval of final design.

Handling Strategy:
Mitigate
Description: Vendors to evaluate high-potential requirements and communicate impacts to SRR. Use RFI's and SDDRs to communicate issues and resolution. Develop and deploy change control.

Handling Strategy Action Items:
- 126-1 Develop and deploy change control, , , John Contardi,

HS Implementation Cost ($K):
0
Basis: No additional cost.

HS Implementation Schedule:
0
Basis: No schedule impact.

Other Handling Strategies:

Statement of Residual Risk:
A risk remains that the vendor underestimates the complexity of complying with these additional requirements. This risk may also be realized with sub-vendors to TTT (i.e., additional costs and/or reluctance to bid).

Residual Likelihood:
Likely
Basis: Likelihood has not been greatly reduced and remains likely.

Residual Consequence:
Critical
Basis: Additional costs for rework, and additional/more detailed process steps not included in the initial vendor estimate.

Residual Risk Level:
High
Residual Impact Basis: Worst Case: Additional costs for rework, and additional/more detailed process steps not included in the initial vendor estimate.

Residual Cost Impact ($K):
- **Best Case:** 500
- **Most Likely:** 1,000
- **Worst Case:** 2,500

Residual Schedule Impact:
- **Most Likely:** 1 Mth
- **Worst Case:** 2 Mths

Impacted Scope of Work:

Evaluation Comments:

Event Comments:
Reference TTT Risk # FBSR 39.
Risk / Opportunity Assessment Form

ID Number: 127
Revision: 01
Last Date Evaluated: 13-Oct-10
Status: Active

Event Title: Flow-down Requirements Imposed on Sub-vendors Impede Lower-tier Procurement Process
Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General
Responsible Org: SRR-PO - Project Owner
Contact: John Contardi
Date Identified: 9 Sep-10

Statement of Event: SRR Engineering documentation requirements, Quality Verification Document Requirements, FAR and DEAR Requirements, past vessel fabrication document requirements, contract required submittals and data submittals are much more involved than normally required elsewhere in the industry. A risk exists that sub-vendors unfamiliar with this rigorous approach will refuse to bid, increase costs, underestimate schedule etc., resulting in cost impacts and delays to the prime vendor and hence the project.

Likelihood: Likely
Basis: Based on SRR Engineering documentation requirements, Quality Verification Document Requirements, FAR and DEAR Requirements, past vessel fabrication document requirements and contract required submittals, data submittals will be voluminous.

Consequence / Benefit: Significant
Basis: Engineering resources, document control systems etc., can be overloaded resulting in delays and additional costs.

Most Significant Cost Impact ($K): 1,000
Most Significant Schedule Impact: 2 Mths

Level: Moderate
Event Trigger: Currently open: close upon completion of sub-vendor activities

Handling Strategy: Mitigate
Description: Primary vendor to: develop a contract deliverables list to accurately identify documents required to be submitted or generated at the time of submittal; review design specifications to assure only "Code Required" and "Contract Required" documents are listed, minimizing unnecessary submittals; assure all submittal requirements are clearly understood by having Fabrication Manager, Engineering Manager and ESH&Q Manager meet with sub-vendor; ensure Procurement Manager, Engineering Manager and ESH&Q Manager review purchasing documents to assure submittals are properly included.

Handling Strategy Action Items:
1. Develop a contract deliverables list to accurately identify documents required to be submitted or generated at the time of submittal. (Marudas), Sergio Mazul,
2. Review design specifications to assure only "Code Required" and "Contract Required" documents are listed. (Marudas/Henkel), Sergio Mazul,
3. Assure all submittal requirements are clearly understood by having Fabrication Manager, Engineering Manager and ESH&Q Manager meet with sub-vendor (Marudas/Henkel/Bell/Davidson/Pavlosky), Sergio Mazul,
4. Ensure Procurement Manager, Engineering Manager and ESH&Q Manager review purchasing documents to assure submittals are properly included. (Henkel/Bell/Davidson), Woody Meadows,

HS Implementation Cost ($K): 0
Basis: Within current baseline.

HS Implementation Schedule: 0
Basis: No impact to schedule.

Other Handling Strategies:

Statement of Residual Risk: A risk remains that sub-vendors unfamiliar with this rigorous approach will refuse to bid, increase costs, underestimate schedule etc., resulting in cost impacts and delays to the prime vendor and hence the project.

Residual Likelihood: Unlikely
Basis: Based on SRR Engineering documentation requirements, Quality Verification Document Requirements, FAR and DEAR Requirements, past vessel fabrication document requirements and contract required submittals, data submittals will be voluminous.

Residual Consequence: Significant
Basis: Engineering resources, document control systems etc., can be overloaded resulting in delays and additional costs.

Residual Risk Level: Moderate
Residual Impact Basis: Worst Case: Significant Delay and additional cost incurred.

Residual Cost Impact ($K):
- **Best Case:** 50
- **Most Likely:** 250
- **Worst Case:** 500
Basis: Likely Case: Some delay and additional cost incurred.
Best Case: Minor delay and additional cost incurred.
Risk / Opportunity Assessment Form

<table>
<thead>
<tr>
<th>ID Number: 127</th>
<th>Revision: 01</th>
<th>Last Date Evaluated: 13-Oct-10</th>
<th>Status: Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Schedule Impact:</td>
<td>2 Wks</td>
<td>2 Wks</td>
<td>1 Mth</td>
</tr>
</tbody>
</table>

Impacted Scope of Work:

Evaluation Comments:

Event Comments: Reference TTT Risk # FBSR 41.
Risk / Opportunity Assessment Form

Event Title: Refractory Damaged During Transportation
Type: Risk
Category: SRR
Assess. Element: 3.0
Title: General
Responsible Org: SRR-PM - Project Manager
Contact: Jon Lunn
Date Identified: 13-Oct-10

Statement of Event: The vessels with refractory linings will be assembled and shipped with their linings installed. A risk exists that during transportation the refractory liner is damaged.

Likelihood: Likely
Basis: The vessels will be shipped for a considerable distance and the refractories are known to be fragile.

Consequence / Benefit: Critical
Basis: Insurance by the vendor will ensure cost of repairing/replacing the refractory will not be incurred by SRR, however aschedule impact of up to 3 months can be realized while the repairs are being made.

Most Significant Cost Impact ($K): 0
Most Significant Schedule Impact: 3 Mths

Level: High
Handling Strategy: Mitigate
Description: Ensure the refractory plan includes specific and adequate transportation precautions against damage to the refractory.

Handling Strategy Action Items:

- 128-1 Review vendor's refractory plan to ensure it includes specific and adequate transportation precautions against damage to the refractory.

HS Implementation Cost ($K): 0
Basis: Within cost Baseline.

HS Implementation Schedule: 0
Basis: No impact to schedule baseline.

Other Handling Strategies:

Statement of Residual Risk: A risk remains that during transportation the refractory liner is damaged.

Residual Likelihood: Unlikely
Basis: Likelihood has been reduced with a validated transportation plan.

Residual Consequence: Critical
Basis: Refractory replacement is necessary. Insurance covers cost, however, schedule impact is realized.

Residual Risk Level: Moderate

<table>
<thead>
<tr>
<th>Residual Cost Impact ($K)</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Schedule Impact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mth</td>
</tr>
</tbody>
</table>

Residual Impact Basis: Worst Case: Refractory replacement is necessary. Insurance covers cost, however, schedule impact is realized. Most Likely and Best cases: Refractory repair is necessary. Insurance covers cost, however, schedule impact is realized.

Impact Scope of Work:

<table>
<thead>
<tr>
<th>Evaluation Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Event Comments:</th>
</tr>
</thead>
</table>
7.9: Riskometer (Example)

<table>
<thead>
<tr>
<th>Risk Number</th>
<th>Risk Title</th>
<th>Risk Level</th>
<th>Acceptable Risk</th>
<th>Minor Concern</th>
<th>Major Concern</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Funding Availability</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td>Project will be baseline at C00-2.</td>
</tr>
<tr>
<td>002</td>
<td>Interfaces with Other Facilities and Projects</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>Keep In-Tank Facility Project Owners & Managers informed about project needs/progress. Maintain integrated project schedule with appropriate logic flow between project & facility activities.</td>
</tr>
<tr>
<td>003</td>
<td>Sampling and Analysis Turnaround Impacts Production</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>Develop Sample & Analytical Plans in advance of actual operations including: a strategy where a sample of every transfer is not required, i.e. take weekly or monthly samples similar to what is done for the evaporator overheads. Ensure backup instrumentation is provided by operators in case of equipment failure. Develop a contingency plan if analytical results are not available, i.e. tighten the acceptable tolerance of the last sample to verify results and to justify continued operation.</td>
</tr>
<tr>
<td>004</td>
<td>Accessibility for Construction Work</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>Coordinate work with operations and other projects through participation in facility work window look ins, 8 week look-ahead (TIBs), and plan of days (PODs) when activities are locked in, ensure critical resources (i.e. rigging, radiation, etc.) are onboard and ready to support.</td>
</tr>
<tr>
<td>005</td>
<td>DOE Directed Changes to Technical Requirements</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>Changes to the Technical baseline imposed by DOE would be a change in project scope and a SCP would be generated. Implementation strategy for STD-1056 has not been approved by DOE.</td>
</tr>
<tr>
<td>006</td>
<td>Availability of Construction Equipment</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>This risk is accepted based on priority being requested for on-site crane. Although priority for crane usage is requested, a higher priority could still "bump" this project.</td>
</tr>
<tr>
<td>007</td>
<td>Readiness/ORR Assessment Findings</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>Project Team will develop and perform detailed management checklist prior to beginning RA. Continued engagement of DOE, Operations and Safety organizations in the system design reviews and testing activities. DOE Operations and Safety organizations to participate in test activities conducted before the DOE ORR. Engage the DOE ORR Team prior to the SAT to enable the team to become familiar with the systems and operations.</td>
</tr>
<tr>
<td>011</td>
<td>Unsafe Conditions Discovered at Turnover</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>SNM-51 watch list to participate in design reviews and weekly walk-downs.</td>
</tr>
<tr>
<td>012</td>
<td>Stakeholder Participation</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>Develop communication plan for involving stakeholders. Keep stakeholders/Engineer Management informed of R&D results. If stakeholders do impose additional design/operational rework/changes requirements on the project, a SCP will be developed.</td>
</tr>
<tr>
<td>013</td>
<td>Safety Baseline Not Accepted By DOE</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>Ensure formal baseline during safety baseline development and prior to VSE/CRS request for approval to avoid false positives. DOE will participate in the DVA meetings, and SDRs. Steering of positions will be given to DOE Engineering at key points in the development of the safety baseline.</td>
</tr>
<tr>
<td>014</td>
<td>Resources Not Available</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>Establish project baselines and key contract milestones. Maintain timely funding autorizations and accurate resource forecasts for all support organizations.</td>
</tr>
<tr>
<td>016</td>
<td>Implementation of DMSB Recommendation 2004-2</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>SDS and PDGAR will help gain DOE approval. SRR-approved evaluation does not require any modifications.</td>
</tr>
<tr>
<td>019</td>
<td>Addition of the GAC to Design</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>ESTO test data and preliminary evaluation indicate GAC (Demineralized Activated Carbons) load for offers mercury removal will not be required. This will be confirmed during the production unit design phase.</td>
</tr>
<tr>
<td>020</td>
<td>Analysis of 241-961 Structure Shows Not-Qualified for Lift</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>Project will be designed to fit criteria.</td>
</tr>
</tbody>
</table>

Page 1 of 6
7.10: T&PRA Analysis

<table>
<thead>
<tr>
<th>Risk ID</th>
<th>Title</th>
<th>Likelihood</th>
<th>Cost</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BC</td>
<td>MLC</td>
</tr>
<tr>
<td>002</td>
<td>Interfaces with Other Facilities and Projects</td>
<td>Likely</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>004</td>
<td>Accessibility for Construction Work</td>
<td>Likely</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>007</td>
<td>DOE Directed Changes to Technical Requirements</td>
<td>Very Unlikely</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>008</td>
<td>Availability of Construction Equipment</td>
<td>Unlikely</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>009</td>
<td>Readiness/ORR Assessment Findings</td>
<td>Very Unlikely</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>011</td>
<td>Unsafe Conditions Discovered at Turnover</td>
<td>Unlikely</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>012</td>
<td>Stakeholder Participation</td>
<td>Unlikely</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>013</td>
<td>Safety Basis not Accepted By DOE</td>
<td>Very Unlikely</td>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>014</td>
<td>Resources Not Available</td>
<td>Unlikely</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>016</td>
<td>Implementation of DNFSB Recommendation 2004-2 Required</td>
<td>Unlikely</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>019</td>
<td>Addition of the GAC to Design</td>
<td>Very Unlikely</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>022</td>
<td>Interfaces With New Contractor Impacts Project</td>
<td>Very Unlikely</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>023</td>
<td>Design Assumptions and Design Uncertainties Result In Rework</td>
<td>Unlikely</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>024</td>
<td>Insufficient Maintainability Provided</td>
<td>Unlikely</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>027</td>
<td>Availability of Consumables</td>
<td>Unlikely</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>033</td>
<td>Long Lead Procurement is Denied or Delayed</td>
<td>Unlikely</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Event</td>
<td>Likelihood</td>
<td>Probability</td>
<td>Risk Duration</td>
<td>Impact Duration</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>043 Engineered Equipment (Modules/Skids)</td>
<td>Unlikely</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Deliveries do not Support Project Schedule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>057 Integration of Multiple Internal Technical Agencies</td>
<td>Unlikely</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>058 Multiple Design Input Documents</td>
<td>Very Unlikely</td>
<td>0</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>061 Facility Space Limitations</td>
<td>Likely</td>
<td>500</td>
<td>1,000</td>
<td>5,000</td>
</tr>
<tr>
<td>063 FBSR Equipment Transportation Requires Additional Precautions</td>
<td>Very Unlikely</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>064 Multiple External Interfaces</td>
<td>Very Unlikely</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>066 Emergent Startup Issues</td>
<td>Likely</td>
<td>40</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>069 Facility Services Design Complexity</td>
<td>Very Unlikely</td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>070 Persistent Contamination Control Issues</td>
<td>Very Unlikely</td>
<td>0</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>076 Aggressive Post Installation Testing Schedule</td>
<td>Unlikely</td>
<td>10</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>085 Maintenance Requires Remote Operations</td>
<td>Likely</td>
<td>300</td>
<td>600</td>
<td>2000</td>
</tr>
<tr>
<td>093 Accident Analysis Determines Additional Safety Controls are Required</td>
<td>Unlikely</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>102 DWPF Particle Size Requirements Not Met</td>
<td>Unlikely</td>
<td>300</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>103 Doorstops Are Not Available As Needed to Support Sampling Activities</td>
<td>Likely</td>
<td>0</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>104 SCDHEC Permitting Engineering Resources Are Not Available</td>
<td>Unlikely</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>108 SCDHEC IWT Construction Permit Issuance Is Delayed</td>
<td>Likely</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>109 Non-Rad (SCDHEC-BAQ (Bureau of Air Quality) Construction Permit is Delayed</td>
<td>Likely</td>
<td>10</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>
DOE-owned Risks

1. Schedule impact data was be used to determine schedule T&PRA contingency and cost of schedule contingency at appropriate confidence levels for use in deriving MR and DOE Contingencies.
Results for SRR-Owned Risks

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Forecast values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>330.21</td>
</tr>
<tr>
<td>10%</td>
<td>2,462.02</td>
</tr>
<tr>
<td>20%</td>
<td>3,152.68</td>
</tr>
<tr>
<td>30%</td>
<td>3,661.42</td>
</tr>
<tr>
<td>40%</td>
<td>4,116.09</td>
</tr>
<tr>
<td>50%</td>
<td>4,515.96</td>
</tr>
<tr>
<td>60%</td>
<td>5,050.07</td>
</tr>
<tr>
<td>70%</td>
<td>5,482.35</td>
</tr>
<tr>
<td>80%</td>
<td>6,185.40</td>
</tr>
<tr>
<td>90%</td>
<td>7,083.34</td>
</tr>
<tr>
<td>100%</td>
<td>10,154.05</td>
</tr>
</tbody>
</table>

SRR Contingency
Risk 002: Interfaces with Other Facilities and Projects

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 50
- Maximum: 50

Risk 004: Accessibility for Construction Work

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 50
- Maximum: 100

Risk 008: Availability of Construction Equipment

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 0
- Maximum: 100
Risk 009: Readiness/ORR Assessment Findings

Triangular distribution with parameters:
- Minimum: 10
- Likeliest: 25
- Maximum: 50

Risk 011: Unsafe Conditions Discovered at Turnover

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 75
- Maximum: 100

Risk 013: Safety Basis not Accepted By DOE

Triangular distribution with parameters:
- Minimum: 20
- Likeliest: 250
- Maximum: 1000
Risk 014: Resources Not Available

Triangular distribution with parameters:

- Minimum: 0
- Likeliest: 100
- Maximum: 200

Risk 019: Addition of the GAC to Design

Triangular distribution with parameters:

- Minimum: 500
- Likeliest: 500
- Maximum: 500

Risk 022: Interfaces With New Contractor Impacts Project

Triangular distribution with parameters:

- Minimum: 0
- Likeliest: 250
- Maximum: 1000
Risk 023: Design Assumptions and Design
Uncertainties Result In Rework

Triangular distribution with parameters:
Minimum 0
Likeliest 500
Maximum 1500

Risk 024: Insufficient Maintainability Provided

Triangular distribution with parameters:
Minimum 10
Likeliest 50
Maximum 100

Risk 043: Engineered Equipment (Modules/Skids)
Deliveries do not Support Project Schedule

Triangular distribution with parameters:
Minimum 0
Likeliest 100
Maximum 200
Risk 057: Integration of Multiple Internal Technical Agencies

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 50
- Maximum: 100

Risk 058: Multiple Design Input Documents

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 15
- Maximum: 25

Risk 061: Facility Space and Weight Limitations

Triangular distribution with parameters:
- Minimum: 500
- Likeliest: 1000
- Maximum: 5000
Risk 063: FBSR Equipment Transportation Requires Additional Precautions

Triangular distribution with parameters:

- Minimum: 0
- Likeliest: 50
- Maximum: 100

Risk 064: Multiple External Interfaces

Triangular distribution with parameters:

- Minimum: 0
- Likeliest: 50
- Maximum: 100

Risk 066: Emergent Startup Issues

Triangular distribution with parameters:

- Minimum: 40
- Likeliest: 100
- Maximum: 125
Risk 069: Facility Services Design Complexity

Triangular distribution with parameters:
- Minimum: 25
- Likeliest: 50
- Maximum: 100

Risk 070: Persistent Contamination Control Issues

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 10
- Maximum: 50

Risk 076: Aggressive Post Installation Testing Schedule

Triangular distribution with parameters:
- Minimum: 10
- Likeliest: 25
- Maximum: 50
Risk 085: Maintenance Requires Remote Operations

Triangular distribution with parameters:
- Minimum: 300
- Likeliest: 600
- Maximum: 2000

Risk 093: Accident Analysis Determines Additional Safety Controls are Required

Triangular distribution with parameters:
- Minimum: 500
- Likeliest: 500
- Maximum: 500

Risk 102: DWPF Particle Size Requirements Not Met

Triangular distribution with parameters:
- Minimum: 300
- Likeliest: 500
- Maximum: 1000
Risk 103: Doorstops Are Not Available As Needed to Support Sampling Activities

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 600
- Maximum: 800

Risk 108: SCDHEC IWT Construction Permit Issuance Is Delayed

Triangular distribution with parameters:
- Minimum: 50
- Likeliest: 50
- Maximum: 50

Risk 109: Non-Rad (SCDHEC-BAQ (Bureau of Air Quality) Construction Permit is Delayed

Triangular distribution with parameters:
- Minimum: 10
- Likeliest: 25
- Maximum: 50
Risk 112: During Startup Additional Samples Are Required

Triangular distribution with parameters:
- Minimum: 25
- Likeliest: 50
- Maximum: 100

Risk 119: Materials Pricing Increases Vendor Costs

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 750
- Maximum: 1500

Risk 122: Testing of Auger Grinder Indicates Major Design Rework is Required

Triangular distribution with parameters:
- Minimum: 0
- Likeliest: 50
- Maximum: 200
Risk 123: Design Comment Resolution Delays Design Completion

Triangular distribution with parameters:
- Minimum: 150
- Likeliest: 300
- Maximum: 500

Risk 125: Numbering System Convention Changes

Triangular distribution with parameters:
- Minimum: 25
- Likeliest: 50
- Maximum: 100

Risk 126: Vendor Underestimates Complexity of SRS SOW Requirements

Triangular distribution with parameters:
- Minimum: 500
- Likeliest: 1000
- Maximum: 2500
Risk 127: Flow-down Requirements Imposed on Sub-vendors Impede Lower-tier Procurement Process

Triangular distribution with parameters:
- Minimum: 50
- Likeliest: 250
- Maximum: 500
Results for DOE-Owned Risks

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Forecast values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.00</td>
</tr>
<tr>
<td>10%</td>
<td>209.70</td>
</tr>
<tr>
<td>20%</td>
<td>1,275.95</td>
</tr>
<tr>
<td>30%</td>
<td>3,500.43</td>
</tr>
<tr>
<td>40%</td>
<td>4,499.97</td>
</tr>
<tr>
<td>50%</td>
<td>5,330.36</td>
</tr>
<tr>
<td>60%</td>
<td>6,394.23</td>
</tr>
<tr>
<td>70%</td>
<td>7,944.52</td>
</tr>
<tr>
<td>80%</td>
<td>10,982.06</td>
</tr>
<tr>
<td>90%</td>
<td>16,636.96</td>
</tr>
<tr>
<td>100%</td>
<td>26,567.91</td>
</tr>
</tbody>
</table>

DOE Contingency
Risk 007: DOE Directed Changes to Technical Requirements

Triangular distribution with parameters:
- Minimum: 500
- Likeliest: 1,000
- Maximum: 5,000

Risk 012: Stakeholder Participation

Triangular distribution with parameters:
- Minimum: 500.00
- Likeliest: 1,000.00
- Maximum: 1,500.00

Risk 016: Implementation of DNFSB Recommendation 2004-2 Required

Triangular distribution with parameters:
- Minimum: 500
- Likeliest: 1,000
- Maximum: 25,000
Risk 117: Additional Project Reviews are Required

Triangular distribution with parameters:
- Minimum: 100.00
- Likeliest: 200.00
- Maximum: 300.00

Risk 118: Legacy Costs Increase

Triangular distribution with parameters:
- Minimum: 2,000
- Likeliest: 4,000
- Maximum: 8,000