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3.0 SITE CHARACTERISTICS

3.1 INTRODUCTION
3.1.1 OBIJECTIVE

The purpose of this chapter is to provide information that satisfies the requirements of Code of
Federal Regulations 10 CFR 830 Subpart B for a Documented Safety Analysis (Ref. 1, 2).

3.1.2 SCOPE

This chapter provides a description of site characteristics necessary for understanding the
Defense Waste Processing Facility (DWPF) facility environs important to the safety basis.
Products of this chapter, as applicable based on the graded approach, include:

e Description of the location of the site, the location of DWPF within the site, and
DWPEF’s proximity to the public and to other facilities.

e Specification of population sheltering, population location and density, and other
aspects of the surrounding area to the site that relate to assessment of the protection of
the health and safety of the public.

e Determination of the historical basis for site characteristics in meteorology,
hydrology, geology, seismology, and other natural phenomena to the extent needed
for hazard and accident analysis.

o Identification of design basis natural phenomena.

e Identification of external man-made threats.

o Identification of nearby facilities impacting, or impacted by, the DWPF.

o Validation of site characteristics assumptions common to safety analysis that were

used in prior DWPF environmental analysis and impact statements.

The information provided in this chapter is to a large degree a summary of the detailed site
characteristic information contained in SRNS-IM-2013-00019, Site Information and Program
Description (Ref. 3). In many sections of this chapter, reference is made to the DSA Support
Document Chapter 1 for additional details on information that is general to the site and is not
specific to the DWPF.

3.1-1
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3.2 REQUIREMENTS

The Savannah River Site (SRS) is required to comply with Department of Energy (DOE)
Orders, as well as codes, standards, and regulations that govern policies and programs. The
SRR Standards/Requirements Identification Document (S/RID) states the codes, standards,
and regulations governing the operation of the SRS (Ref. 63). Programmatic compliance
assessments are performed against the S/RID and documented as specified in the Compliance
Assurance Manual 8B (Ref. 64). The Standards Management/Compliance Section maintains
records of the programmatic compliance assessments.

3.2-1
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3.3 SITE DESCRIPTION
3.3.1 GEOGRAPHY
3.3.1.1 Location

The Savannah River Site (SRS) is owned by the US Department of Energy (DOE) and is
operated by the SRS contractors. SRS is an approximately circular tract of 310 square miles
(198,344 acres) within Aiken, Barnwell and Allendale counties in southwestern South
Carolina (SC). The site is centered approximately 25 miles southeast to the closest edge of
the city limits of Augusta, Georgia (GA), 100 miles from the Atlantic Coast, about 110 miles
from the North Carolina (NC) border to the north-northwest, and is bounded on the southwest
by the Savannah River. Figure 3.3-1 shows the location of specific site areas along with
rivers and lakes as well as a schematic of the site relative to SC, GA and the Atlantic Ocean.
As shown in this figure, the DWPF site is located in Aiken County.

3.3.1.2 Exclusion Area

SRS terrain ranges from virtually flat to slopes of forty degrees. The vast majority of land is
managed as pine plantation with fields, hardwood forests, ponds, marshes and Carolina bays
making up about one-third of the total area. The SRS facilities occupy about seven percent of
the total land area. There are six principal tributaries leading to the Savannah River from
SRS.

SRS has an extensive road system, and an onsite rail system that connects with tracks owned
by the CSX rail system. The electrical grid on SRS operates at 115 kV and draws power from
two transmission lines on separate rights-of-way from South Carolina Electric and Gas
(SCE&G) Urquhart Station and a third line from the 230-kV tie-line between the Summer and
Canadys stations of SCE&G. SRS also has a tie-in line to Vogtle Electrical Generating Plant
(VEGP).

The outer perimeter fenceline of SRS (i.e., the site boundary) is the point where offsite
radiological evaluation guidelines are applied. The site is not open to the public except for
guided tours, controlled deer hunts, authorized environmental studies, through-traffic along
the CSX Railroad, and open traffic along SC Route 125 (SRS Road A), US Route 278, and
SRS Road 1 at the northern edge of the reservation. The outer perimeter is fenced and access
is controlled by the security contractor such that access by the public can be restricted as the
need arises. The roads that pass through or near the perimeter can be blocked by protective
forces personnel or with the assistance of local law enforcement personnel.

For additional information regarding the site location and site description including detailed
maps, see SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).

3.3-1
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3.3.2 DEMOGRAPHY

3.3.2.1 Permanent Population and Distribution

Within a 50-mile radius of the SRS center is a total resident population of approximately
730,000. One major urban center, Augusta, GA (1990 estimated city population of 45,000),
lies about 25 miles west-northwest of the site. Four other cities within the 50-mile radius had
1990 populations greater than 13,000: Aiken, SC, about 20 miles north-northwest;
Orangeburg, SC, 48 miles east-northeast; North Augusta, SC, 23 miles northwest; and Evans,
GA, about 35 miles west-northwest of the site. All other cities and towns have populations
less than 7,000, the largest being Belvedere, SC, followed by Red Bank, SC, Waynesboro,
GA, and Barnwell, SC.

Fort Gordon, located 9 miles southwest of Augusta, GA, is the nearest military facility, with a
population exceeding 18,000. Upon the transfer of all communications electronics to Fort
Gordon in 1976, it became the Army’s single entity for Signal Corps training. More than
54,000 officers, enlisted students, Army Reserve and National Guard troops are trained at the
Signal Center each year.

The existing public school population within 5 miles of the site boundary consists of students
and school personnel associated with 11 public schools located in New Ellenton, Jackson,
Williston, and Barnwell, SC. Total enrollment in the 11 schools was 6895 during the 1992-93
school year. There are no Georgia public schools located within 5 miles of the site boundary
nor are there any private schools or colleges in the 5-mile vicinity.

The total onsite employment at SRS during the day shift of a weekday was approximately
8,300 as of November 2014 (Ref. 3).

The principal changes expected in each of the plant areas through the year 2000 are described
in the Site Development and Facility Utilization Plan, Vol. II, Savannah River Site. New
facilities at SRS, including those which became operable in 1989 and those expected before
2000, will involve the addition of approximately 1900 personnel. The Fuel Materials Facility
located in F-Area began operations in 1988, but DOE directed that the facility be placed on
cold standby in 1989. The F/H Effluent Treatment Facility began operation in November
1988. The Saltstone Facility (Z-Area) began operating in June 1990. The Defense Waste
Processing Facility (DWPF) began water runs in late 1990.

3.3.2.2 Transient Population Variations

Transient population variations for the general SRS are addressed for the area within
approximately 5 miles of the SRS boundary. Any transient population variations beyond this
limit are not relevant to a SAR. The transient population components investigated are
industrial, school, recreational, health care, and casual. There are no military reservations or
correctional institutions located within 5 miles of the site boundary.

3.3-2
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The transient population consists of all persons traveling through the vicinity of an area. A 5-
mile radius is considered when discussing the transient population. The 5-mile area for
DWPF falls entirely within the SRS boundary. Therefore, the transient population for S-Area
consists of employees, badged visitors, and vendors making deliveries at site locations within
the area.

For additional details refer to SRNS-IM-2013-00019, Site Information and Program
Description (Ref. 3).

3.3.3 USES OF NEARBY LAND AND WATERS
3.3.3.1 Land Use

Land use within approximately 5 miles of the SRS boundary is discussed in this subsection.
The total area investigated is approximately 800 square miles. Of these 800 square miles, 300
are used for industrial purposes associated with the operation of SRS and for commercial and
non-commercial timber management. The land that forms a buffer zone around the
production facilities is managed by DOE. The countryside surrounding SRS is predominantly
forested. Farming in this area is diversified. The main crops are soybeans, corn, wheat,
cotton, peaches, peanuts, and various vegetable crops. Land within a 5-mile radius of DWPF
lies completely within SRS and is used either for industrial purposes associated with SRS or
as forest land. Forested areas are managed by the Savannah River Forestry Service (SRFS),
an administrative unit of the United States Forestry Service (USFS). Through an interagency
agreement between DOE and USFS, SRFS provides timber management, research support,
soil and water protection, wildlife management, secondary road management, and fire
management.

The major facilities at SRS include the 100 Area Reactor (R, C, P, L and K-Area) facilities, the
200 Area Separations (F and H-Area) facilities, the 200 Area Tritium facilities including the
Replacement Tritium Facility (H-Area), the 200 Area Waste Management Operations facilities
(F and H-Area), the 200 Area Defense Waste Processing (S and Z-Area) facilities, the
Consolidated Incinerator Facility (H-Area), the Solid Waste Storage (E-Area) facilities, the
300 Area Reactor Materials (M-Area) facilities, the 400 Area Heavy Water (D-Area) facilities,
the Construction Central Shops (N-Area) facilities and the 700 Area Administrative (A-Area)
facilities. The contractor for security services at SRS has facilities located in 700-B (B-Area).
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All facilities scattered throughout SRS but outside the fenced production areas of SRS are
designated with a 600 identification “building” number. In Figure 3.3-2, the major areas of
SRS (as described above) including the key facilities in each area are identified. The 700-

A Area consists of DOE and Westinghouse (now called Washington) Administration,
Savannah River National Laboratory (SRNL), and the Savannah River Ecology Lab (SREL).
SREL (operated by the University of Georgia) conducts ecological studies on SRS, which was
designated a National Environmental Research Park in 1972. In addition, 891 acres are set
aside in 10 separate reserve areas for special studies.

The largest single industrial land use is the VEGP in Burke County, GA. Currently, two
nuclear reactor units are operating. Other industries in the area with relatively large land use
near SRS include Allied General Nuclear Services (no longer operating), Chem Nuclear
Systems, Inc., Carolina Metals, Environmental and Chemical Sciences, and Sandoz
Chemicals.

3.3.3.2 Water Use

The major rivers near SRS include the Savannah, Salkehatchie, and South Fork Edisto Rivers.
The Savannah River bounds the SRS for 17 miles on the southwest side of the site.

3.3.3.2.1 GENERAL USES OF THE SAVANNAH RIVER

The Savannah River forms the boundary between Georgia and South Carolina. Downstream
from Augusta, GA, the Savannah River is classified as Class B waters suitable for domestic
supply after treatment, for propagation of fish, and for industrial and agricultural uses. The
river supplies water for Augusta, GA, North Augusta, SC, Beaufort and Jasper counties in SC,
and supplements the water supply of Savannah, GA. It also receives domestic and industrial
wastes from Augusta, GA; North Augusta, SC; and Horse Creek Valley in Aiken County, SC.

The production reactors at SRS were, prior to shutdown, cooled with water pumped from the
river. Coal-fired power plants on the site are still cooled with river water. Effluents and
waste water from SRS are discharged into the Savannah River tributaries which flow across
SRS.

Recreational uses of the Savannah River include sport fishing but only limited contact
activities such as swimming and water skiing. American shad is the principal fish taken
commercially from the river.

3.3.3.2.2 FISHERIES

There are commercial fisheries along the Savannah River. Rivers and streams near and
downstream from SRS are fished mainly by local residents for recreation and food.

3.3.3.2.3 RECREATION

Over 95% of South Carolina's impounded waters are contained in large reservoirs. Most have
multipurpose recreational uses such as swimming, water skiing, boating, and fishing. Par
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Pond, which was previously used for reactor cooling water, is not accessible to the public.
Thurmond Lake (Clarks Hill Reservoir), Hartwell Reservoir, and Russell Dam are used for
hydroelectric power generation, flood control, and water supply as well as for recreation.

Boat use on the Savannah River can only be estimated. In 1987, there were 21,399 registered

boats in South Carolina counties bordering the Savannah River south of Augusta. Most of the
boats for this section of the Savannah River were registered near Augusta and Thurmond Lake
and in Aiken County.

3.3.3.24 AGRICULTURAL WATER USE

Water for agricultural use in Aiken, Barnwell, and Allendale counties is obtained primarily
from lakes and ponds. Corn, peanuts, soybeans, and truck crops are the crops for which
irrigation is economically feasible.

3.3.3.2.5 MUNICIPAL USE OF LOCAL SURFACE WATER

The Savannah River and its reservoirs are the sources of water for 64 municipal and industrial
users. Total withdrawals amount to approximately one billion gallons per day. The largest
water user is VEGP.

The larger communities in Aiken, Richmond, and Burke counties use surface water supplies
as well as ground water. None of these surface water supplies are impacted by liquid
discharges from operations at SRS.

In Aiken County, the city of Aiken uses water from Shaws Creek. The city of North Augusta
draws about 2.78 million gallons per day (mgd) from the Savannah River. The Augusta city
water system draws its water supply, averaging about 24 mgd, from the Savannah River more
than 25 miles upstream from SRS. Columbia County has a surface water plant along Georgia
Route 50 to withdraw water from Thurmond Lake.

3.3.3.2.6 GROUNDWATER USE

The coastal plain sediments that underlie SRS are an important hydrologic resource since the
formations are sources for drinking water, industrial process and cooling water, and water
used for agricultural purposes. Fifty-six municipalities and industries identified near the site
use this ground water.
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3.4 ENVIRONMENTAL DESCRIPTION
3.4.1 METEOROLOGY

The climate of the area is classified as humid subtropical, and is characterized by short, mild
winters and long, warm, humid summers. Average annual precipitation for SRS is 48 inches.
The major factor affecting summer weather is the “Bermuda high” pressure system. Frequent
thunderstorms are prevalent, accounting for about 16 inches of the annual rainfall. Fog,
creating a visibility of 1/4 mile or less occurs on an average of 28 days per year. Autumn
weather generally brings cool, clear mornings, and mild, sunny afternoons. Autumn rainfalls
account for about 9 inches of the annual rainfall. Winters alternate between warm, moist
weather, and dry, cool weather with an occasional Arctic air mass influence. Ice and snow
accumulations in excess of 1 inch are rare. Extreme air pollution episodes in the region are
rare.

SRS is subject to tornadoes and severe thunderstorms with a low frequency of point strike
recurrence. The hurricane frequency average is about one every eight years; highest hurricane
winds observed on-site is 75 mph, and occurred in 1959.

Sources of data describing local climatology include an onsite meteorological tower network,
an instrumented television tower 8.5 miles northwest of SRS, and the National Weather
Service at Bush Field in Augusta, GA, approximately 12 miles west-northwest of SRS. Data
from the H-Area tower (one of eight SRS towers with wind, temperature, and dewpoint
sensors located at 200 feet above ground) are the most representative for characterizing the
dispersion climatology of DWPF.

Since there are no pronounced topographic features within 19.3 miles of the site, the local
terrain has little effect on wind and stability climatology at SRS. During stable atmospheric
conditions, some channeling or air flow stagnation could occur in some of the more
pronounced valleys. However, any terrain-induced increases in pollutant concentrations
would be very localized and short-lived.

For additional details on regional climatology, local meteorology and the onsite
meteorological measurements program, see SRNS-IM-2013-00019, Site Information and
Program Description (Ref. 3). Short-term (i.e., accident) relative diffusion factors (/Qs) are
calculated. Various computer codes are used in calculating the diffusion factors and
consequences. These are identified in FSAR Section 9.4. A description of the methodology
is given in the Environmental Dose Assessment Manual (Ref. 4).

342 HYDROLOGY

3.4.2.1 Surface Hydrology

The Savannah River basin is located in three physiographic provinces, the Blue Ridge, the
Piedmont, and the Coastal Plain. The Piedmont contains about 50% of the Savannah River
drainage basin, and the Coastal Plain contains about 31% of the drainage basin.
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SRS is located entirely on the Coastal Plain. Much of it is located on the Aiken Plateau, and
surface water eventually drains into the Savannah River via several streams. The Savannah
River was the principal water source for SRS when the nuclear reactors were operating, and is
at a substantially lower elevation than SRS. Par Pond, an artificial lake, is the largest
impoundment on the site. Water is retained in numerous lakes and Carolina bays. Most of the
SRS water comes from aquifers.

Flooding of the Savannah River has been controlled by a series of dams and reservoirs,
Thurmond being the largest. The record historical flood at Augusta, GA occurred in 1796,
with an estimated discharge of 360,000 cfs; the peak flow (350,000 cfs) recorded by the U.S.
Geological Survey occurred on October 3, 1929. Since Strom Thurmond Dam was
constructed, no major flood has occurred at Augusta, GA.

For the 30-year period from 1921 to 1950, before construction of Strom Thurmond Dam, the
mean annual maximum flow of the Savannah River was 92,600 cfs, the 10-year maximum
flow was 211,000 cfs, and the estimated 50-year maximum flow was 362,000 cfs. For the 30-
year period from 1956 to 1985, after construction of Strom Thurmond Dam, the mean annual
maximum flow was 35,600 cfs, the 10-year maximum flow was 58,000 cfs, and the estimated
50-year maximum flow was 80,500 cfs. The nearest surface stream to DWPF is Upper Three
Runs Creek (UTRC) which is approximately 1 mile north of DWPF. No dams are located in
the Upper Three Runs Creek watershed.

All structures where nuclear activities are conducted at SRS are located on topographic high
points, resulting in no safety threat due to high water from the Savannah River or any of the
nearby streams on site. Specifically, DWPF is located as a local topographic high part
(minimum grade level 275 feet mean sea level [msl]) and is within the Savannah River
drainage basin at the divide between Crouch Branch and McQueen’s Branch watersheds.
McQueen’s Branch drains into Tinker Creek near its junction with UTRC, and Crouch Branch
drains directly into UTRC. All streams in the area are at substantially lower elevations than
the DWPF. Because flooding of DWPF is not a credible safety hazard, safety equipment and
systems to protect structures against adverse hydrologic consequences are unwarranted.
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3.4.2.1.1 PROBABLE MAXIMUM FLOOD ON STREAMS AND RIVERS

The Probable Maximum Flood (PMF) values for the Savannah River and for UTRC were
determined using Regulatory Guide 1.59 (Ref. 5). The PMF of 1,001,000 cfs for the
Savannah River at VEGP and thus at SRS, reported in Appendix B of the Regulatory Guide,
is slightly greater than the PMF flood discharge of 895,000 cfs determined by Southern
Company Services (Ref. 6) in the VEGP Final Safety Analysis Report (FSAR). Procedures
outlined in the Regulatory Guide were used to verify the PMF for the Savannah River and to
estimate the PMF for UTRC.

The PMF for McQueen's Branch was calculated by first determining the Probable Maximum
Precipitation (PMP). National Weather Service Hydrometeorological Reports No. 51 (Ref. 7)
and No. 52 (Ref. 8) were used to develop PMP envelopes for SRS and the Savannah River
drainage basin upstream of the site. The runoff hydrograph was developed using methods
developed by the Bureau of Reclamation (Ref. 9).

Figure 3.4-1 shows cross sections of the stream valleys and the peak water-level stages under
PMF conditions. The figure shows that the peak flood level for each case is well below the
DWPF site and poses no hazard for safety facilities at the site.

34.2.1.1.1 Probable Maximum Precipitation (PMP)

PMP envelopes for the Savannah River Basin upstream of VEGP were developed for the
VEGP FSAR (Ref. 6) following the techniques presented by the National Weather Service
(Ref. 8). These elliptic envelopes were spatially distributed to cover the Savannah River
Basin and its drainage. For each drainage area, the PMPs at 6-hr intervals were arranged in
critical sequence to develop the flood hydrograph.

The 1-hr and 6-hr PMPs for the small watershed adjacent to the site (McQueen's Branch) were
determined from Hydrometeorological Report No. 51 (Ref. 7). The values for rainfall at a
point were used because of the small size of the watershed above the site (approximately 0.75
miz). Using a technique given in a publication by the Bureau of Reclamation (Ref. 9), rainfall
increments for additional 1-hr periods were designed to maximize conservative PMF
estimates.

Precipitation Losses

Precipitation losses were conservatively assumed to be zero when developing the PMF
evaluation from the PMP for the small watershed near the site.

Runoff Model

Using runoff and flood routing routines developed by the US Army Corps of Engineers
(including HEC-1), the PMF for the Savannah River at VEGP was determined to be 895,000
cfs, assuming no valley storage effect. Because the VEGP runoff model PMF is about 10%
less than the PMF of 1,001,000 cfs for the Savannah River reported in Regulatory Guide 1.59
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(Ref. 5), and because the DWPF site elevation is much greater than the VEGP site elevation,
the larger PMF was used in this analysis.

The PMF flood peak for UTRC was calculated using the simplified method in Regulatory
Guide 1.59. The PMF was plotted using the figures in Appendix B of the guide for drainage
areas ranging from 100 to 20,000 mi.”; then interpolation of the logarithmic plot provided the
PMF for the 163 mi’ watershed of UTRC. This method provided a conservative value of
150,000 cfs for UTRC at its closest approach to the DWPF site.

A one-hr synthetic unit hydrograph was developed for the McQueen’s Branch watershed

(0.75 miz) using methods described in “Design of Small Dams” (Ref. 9). Because part of the
DWPF site and part of H-Area are in the watershed, the synthetic hydrograph data for urban
basins and the point PMP of 19 inches in 1 hr and 31 inches in 6 hr were used to develop a
conservative estimate of PMF in McQueen’s Branch (Ref. 7). Infiltration was neglected, and
the unit hydrographs were compared to determine the peak discharge.

342.1.1.2 Probable Maximum Flood Flow

The PMF discharge was calculated to be 11,000 cfs for McQueen’s Branch just above Road F
and adjacent to the DWPF site. This cfs value corresponds to an elevation of 224.5 feet msl at
the closest approach of the stream to the site (Figure 3.4-1). The PMF discharge is 15,000 cfs
for UTRC at a point just downstream from where it is joined by Tinker Creek, corresponding
to a flood stage elevation of 173 feet msl, respectively.

The flood stages are considerably lower in elevation than minimum plant grade at the DWPF
site; therefore, coincident wind-generated waves do not pose a threat to site safety.

342.1.1.3 Water Level Determinations

Because the flood flows calculated are clearly not a threat to the site, conservative estimates
of stage were calculated. The Manning equation was used to relate flood stage to the flood
discharge. Stream cross sections and channel slopes were taken from topographic maps, and a
conservative Manning's “n” value of 0.02 was used. The PMF flood stage elevation is 224.5
feet msl for McQueen’s Branch, located approximately 2,200 feet from the DWPF site, and
173 feet. msl for UTRC at its closest approach to the DWPF site.

For the Savannah River, the PMF stage of 140 feet msl computed for this analysis was
compared to the PMF stages generated in the VEGP FSAR (Ref. 6) and found to be
conservative. Figure 3.4-2 shows the cross section at each location where stage was computed
and the maximum stage during PMF.

The flood stages associated with the PMF discharge estimates are well below the DWPF
minimum plant grade for a safety structure (274 feet msl).
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3.4.2.2 Subsurface Hydrology

3.4.2.2.1 REGIONAL CHARACTERISTICS

Two distinct hydrologic regimes underlie SRS. The first of these systems is comprised of
Paleozoic metamorphic and igneous basement rocks and Triassic-aged lithified mudstone,
sandstone, and conglomerate within the Dunbarton Basin. The second regime consists of
unconsolidated Coastal Plain sediments of Late Cretaceous and Tertiary age. The geologies of
these two regimes are described further in Subsection 3.4.3.

The Paleozoic rocks are dominantly gneisses and schists with lesser amounts of quartzite.
These metamorphic rocks are intruded by somewhat younger Paleozoic granitic plutons.
Similar Paleozoic metamorphic and igneous rocks crop out in the Piedmont Province north of
the Fall Line, which is approximately 20 miles northwest of SRS.

Triassic-age sediments lie within the Dunbarton Basin. The Dunbarton Basin is a graben
structure within the Paleozoic metamorphic basement. It lies beneath about 1200 feet of
Coastal Plain sediments in the southeast part of SRS. The Triassic sediments consist of
poorly sorted, consolidated gravel, sand, silt, and clay. Coarser material is found near the
northwest margin of the basin where fanglomerate is abundant. Similar to other East Coast
Triassic basins in the Atlantic Coastal plain, sand, silt, and clay predominate near the center of
the basin. Sorting in the Triassic rocks is extremely poor, resulting in very low primary
permeability. The lithology of the clasts in the sedimentary rock indicates that they were
derived from crystalline metamorphic rock immediately to the northwest of the Dunbarton
basin. Many of the sands are arkosic, indicating little transport and/or rapid burial.

The Coastal Plain sediments comprise a clastic wedge that thickens and dips toward the
southeast. Near the mouth of the Savannah River, this wedge is 4000 feet thick and thins
northwest towards the Fall Line where it pinches out completely. Coastal Plain sediments are
Late Cretaceous to Holocene in age. Coastal Plain sediments in the vicinity of SRS consist of
sandy clays and clayey sands, although occasional beds of clean sand or clay also occur.

Both the Paleozoic and Triassic rocks were leveled by erosion and are unconformably overlain
by unconsolidated to semiconsolidated Coastal Plain sediments. Two clay-rich zones form an
effective seal that separates ground water in the Coastal Plain sediments from ground water in
the underlying crystalline Paleozoic bedrock and the Triassic Basin.

The hydrology of the buried Paleozoic and Triassic basement hydrologic system was studied
intensively to assess the safety and feasibility of storing radioactive waste in these rocks.
Water injection and withdrawal tests on sections of rock isolated by packing off indicate that
two kinds of fractures exist in the Paleozoic bedrock. The first consists of minute fractures
that pervade the entire rock mass but transmit water slowly. Rocks containing this kind of
fracture are called “virtually impermeable rocks.” The second kind of fractures have larger
openings that transmit water more quickly. They are vertically restricted but can be traced
laterally. Rocks containing these kinds of fractures are called “hydraulically transmissive
rocks.”
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Groundwater in the Paleozoic bedrock is not pumped at SRS except for testing programs
because of the large amount of groundwater in the prolific aquifers of the Coastal Plain
sediments. As such, the Paleozoic bedrock will probably not be used as a water source at
SRS. The hydrologic regime of the metamorphic and igneous basement rocks at SRS,
therefore, is unlikely to change appreciably for many decades. Immediately south of the Fall
Line and to the north of it in the Piedmont province, the Paleozoic metamorphic and igneous
rocks are domestic aquifers.

In the Dunbarton Triassic Basin, groundwater is present in the primary and secondary porosity
of clastic rocks. However, the hydraulic conductivity is extremely low, and water movement
is almost nonexistent. Water is not pumped from rocks in the Dunbarton Triassic Basin, nor
is there likely to be any pumped in the future because of the poor water quality and low
permeability of the rocks.

The Coastal Plain sediments constitute a multilayered hydrologic system that is comprised of
low-permeability stratigraphic zones, which retard groundwater flow (confining units),
interbedded with permeable zones that readily transmit groundwater (aquifers). In general,
the transmissive zones consist of sands while the low permeable zones have high silt and clay
content. Groundwater resides primarily in the pore spaces of the unconsolidated sands.
Groundwater flow paths and flow velocities for each of these units are governed by the
hydraulic properties and geometry of the particular unit, and by the distribution of recharge
and discharge areas.

In the SRS region, Coastal Plain sediments are subdivided into two confining systems and two
aquifer systems. The basal hydrostratigraphic system in the Coastal Plain sediments is
designated as the Appleton Confining System (formerly Confining System I). This is overlain
by the Dublin-Midville Aquifer System (formerly Aquifer System I), the Myers Branch
Confining System (Confining System I-II), and the Floridan Aquifer System (Aquifer System
IT). The systems are further subdivided into aquifer and confining units. Several
hydrostratigraphic nomenclatures have been used at SRS. Figure 3.4-3 compares some of the
hydrostratigraphic nomenclatures that have been used at SRS.

For details of the geohydrology of the confining and aquifer systems including hydraulic
conductivity, porosity and permeability data, and for a discussion of water quality at SRS, and
use of area groundwater, see SRNS-IM-2013-00019, Site Information and Program
Description (Ref. 3).

3.4.2.2.2 GEOHYDROLOGIC ZONES AT DWPF

In the vicinity of DWPF, the comparison of hydrostratigraphy nomenclature by Price in 1988,
shown in Figure 3.4-3, describes the hydrostratigraphy beneath DWPF. The Price
nomenclature breaks regional systems and larger aquifer units into hydrostratigraphic zones 1
through 8. Some zones are subdivided; for example, zone 5 consists of an aquifer (zone 5a)
and a confining zone or aquitard (zone 5b). Other units are not subdivided; for example, zone
1 is an aquitard consisting of clay and clayey, silty sand. Some aquitards (e.g., zone 1) are
effective seals throughout the SRS area. However, because of lateral and vertical changes in
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permeability, other beds referred to as aquitards inhibit the vertical flow of water between
aquifers in some places but allow its passage in others.

Zone 1, an aquitard, corresponds to the Appleton Confining System and consists of clay layers
and semiconsolidated, clayes, and silty sands.

Zone 2 comprises three subzones: 2a, 2b, and 2c. Zones 2a and 2b are aquifers which make
up the larger McQueen Branch Aquifer, and zone 2c¢ corresponds to the McQueen Branch
confining unit. Zone 2a corresponds to the Middendorf Formation, which consists
predominantly of dirty-to-clean, fine-to-coarse sands. Clay layers occur within zone 2a.
These beds appear to have lateral continuity, but they are only locally impervious. Thus, zone
2a is connected to the overlying lower Black Creek sand (zone 2b). Zone 2¢ (McQueen
Branch Confining Unit) is a clay layer that is fissile in places. It is a confining layer in some
parts of SRS, but it does not form an effective seal in other places.

Zone 3 consists of a lower sand aquifer (zone 3a) and an aquitard (zone 3b). Zone 3a
corresponds to the Crouch Branch Aquifer. The sand aquifer includes the upper part of the
Black Creek Formation and most of the Peedee Formation. Zone 3b is the uppermost part of
the Peedee. It is an effective aquitard in many places at SRS, but at other places it allows
upward or downward flow of groundwater to the basal, sandy portion of zone 4. Zone 3b is
part of the Myers Branch Confining System.

Zone 4 consists of the Rhems and Williamsburg formations of the Paleocene Black Mingo
Group. This zone contains lignitic clay interbedded with sand layers. The sand at the base of
zone 4 may be water bearing, but it is only a minor portion of the section. Most of the section
consists of virtually impermeable material; therefore, zone 4 is considered an aquitard. Zone
4 is a part of the Myers Branch Confining System.

Zone 5 consists of the clastic sediments of the Congaree Formation (zone 5a) and the
glauconite bearing sands and clays of the lowermost Santee Formation (zone 5b). Zone 5a
corresponds to the Gordon Aquifer consisting predominantly of fine-to-coarse quartz sand.
Clay laminae occur throughout the section, but they are too thin and discontinuous to be
effective aquitards. Zone 5b, often called the “green clay” or Gordon Confining Unit, is
characterized by rapid facies changes. At the DWPF site, it consists of dirty-to-clean sands
that enclose clay lenses, which attain a maximum thickness of 10 ft. Thus, the permeability of
the “green clay” varies greatly, causing it to act as a confining to semiconfining layer in some
places and a moderately transmissive layer in other places. However, the “green clay” is an
effective confining unit at the DWPF site.

Zone 6 is the lower portion of the McBean Aquifer which lies within the larger Upper Three
Runs Aquifer. Atthe DWPF site, zone 6 corresponds to the calcareous to noncalcareous
sands of the Santee Formation. The hydraulic conductivity of the zone is moderately low at
the DWPF site, but elsewhere at SRS it attains a moderate to moderately high hydraulic
conductivity. Groundwater leaks into this zone from the overlying Dry Branch Formation.
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The saturated zone at the DWPF site begins in zone 7. Zone 7, like zone 6, lies within the
Upper Three Runs Aquifer. Atthe DWPF site zone 7 includes the Dry Branch and the
Tobacco Road formations. The three hydrological subdivisions of zone 7 are as follows:
zone 7a is the upper portion of the McBean Aquifer corresponding to the lower part of the
Dry Branch formation; zone 7b, the “tan clay” horizon within the Dry Branch; and zone 7c,
the Barnwell Aquifer corresponding to the upper part of the Dry Branch Formation and the
Tobacco Road Formation. The Dry Branch and Tobacco Road formations are predominantly
fine-to-coarse sand, but clay laminae are fairly common. The “tan clay” (zone 7b) is a local
aquitard only, and zones 7a and 7c are hydrologically connected in some places at the DWPF
site. Groundwater occurs under unconfined to semiconfined conditions in zone 7a. In zone
7c, groundwater occurs under unconfined conditions at most places at the DWPF site.

Zone 8 corresponds to the “Upland unit.” Dirty to moderately clean, cross-bedded sands are
dominant in this unit, but clay bodies are common. Conspicuous quartz pebbles are common
locally, and large-to-small clay balls occur sporadically. Nearly all of the sands within zone 8
are unsaturated, but perched water occurs above some of the clay bodies.

3.4.2.2.3 SITE CHARACTERISTICS

D’Appolonia Consulting Engineers installed 23 temporary piezometers during the DWPF site
investigation. These piezometers along with 11 others already existing in the area were used
for the initial groundwater investigation. The plan location of these piezometers is shown in
Figure 3.4-4 and elevation data for these wells are listed in Table 3.4-1. Contours of
piezometric head at the DWPF site for zones 7c, 6, 5 and 4 for data collected between October
and December of 1981 are shown in Figures 3.4-5 through 3.4-8.

Fourteen monitoring wells (Figure 3.4-4) have been installed at S Area. Wells SCA 1, 1A, 2,
and 2A were installed in 1986 to monitor the groundwater beneath the vitrification building.
In addition, SCA 3, 3A, 4, 4A, 5, and 6 were drilled in January 1990. These wells have been
monitored since construction was completed. Wells SBG1 through 6 (Figure 3.4-9) were
installed to monitor the groundwater at the perimeter of the site. The SBG wells were
installed in September 1985 except for SBG 5, which was installed in January 1987. In
November 1988, wells SLP 1 and 2 were installed in the DWPF low point pump pit, and wells
ZDT 1 and 2 were installed in the nearby Z-Area drain tank.

The observed water levels indicate that at the DWPF site zones 7c and 6 flow toward
McQueen Branch, zone 5 flows toward UTRC, and zone 4 flows toward the Savannah River.
There is a net downward movement of water to zone 5. Zone 5b, the “green clay” which
separates zones 5 and 6 appears to be an effective aquitard, as there is almost a 70 ft
difference in head across the layer, and piezometric fluctuations in zone 5 are much smaller
than in zone 6.

Groundwater from the SBG wells has been monitored since March 1986 (Table 3.4-2). Well
SBG 5 has elevated pH, calcium, and conductivity levels, indicating that the water from this
well is either being chemically influenced by the well grout or by a calcareous zone in the
underlying formations. Mercury (up to 0.001 mg/L) above background levels has been
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detected in well SBG 1. Elevated levels of total organic halogens, trichloroethylene, trans-
1,2-dichloroethene, and tetrachloroethylene have been detected in well SBG 4. The source of
the mercury and organics in the groundwater is unknown. Tritium activities (up to 23.2
pCi/mL) above background levels have been detected in several wells. This tritium probably
was released into the air at the nearby separations area and was deposited in rainfall. Elevated
lead concentrations (up to 0.062 mg/L) were detected in several wells. The lead in the
groundwater is probably due to leaching of naturally occurring lead in the soils.

Two water supply wells, designed with a capacity of 1,000 gpm each, were constructed at the
DWPF site during 1985 and 1986. The wells draw water from the Cretaceous-age Lumbee
Group, zone 2 and 3, at elevations of 220 to 550 ft below mean sea level. The water from
these wells are available for fire fighting, domestic water, and process water.

The DWPF site is within the groundwater recharge areas for zones 5, 6, and 7. The presence
of the DWPF site will increase the surface runoff in the area, decreasing the infiltration into
the groundwater. This decreased infiltration may cause minor long-term lowering of the
water levels in zones 6 and 7. Because no water is used from these zones, and the zones drain
into the nearby creeks, lowering the water level will not affect the safety of the site.

34224 CONTAMINANT TRANSPORT ANALYSIS

In the unlikely event of a leak of radioactive material during DWPF operations, contaminants
would move vertically downward to the water table and then through the saturated zone to
points of surface discharge. Movement is controlled by the rate and direction of groundwater
flow, hydrodynamic dispersion, and the absorptive capabilities of the soils. During the period
of travel, the concentration of radioactive materials would be reduced by radioactive decay
and soil sorption.

3.4.2.2.4.1 Estimation of Travel Time

Figure 3.4-10 is an potentiometric surface map of the water table underlying DWPF. Shallow
ground water beneath the site moves generally to the east toward a small tributary of Upper
Three Runs Creek. The water table underlying DWPF occurs in the Barnwell Formation.

A postulated leak (darkened circle) occurring along the waste transfer lines from H-Area to
the DWPF canyon building would have a shorter path to a surface discharge than any other
point on the site where waste will be handled or stored. The flow path shown from the
darkened circle to the surface discharge point is approximately that which would be taken by
leakage form the waste transfer lines, assuming that the waste moves along the water table
surface*. [*The location of DWPF facilities as shown in Figure 3.4-10 have changed due to
later design modifications.] In reality, recharge from precipitation reaching the water table
would force the transported wastes deeper, causing the wastes to follow a curvilinear path
from point of leakage to surface discharge. As this path would be longer and the travel time
consequently greater, considering flow along the water-table surface is conservative.
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The transfer lines are buried at some distance above the water table and are underlain by some
depth of unsaturated material. Flow velocities in the unsaturated zone are on the order of 7
ft/yr (2.1 m/yr)(Ref. 10). This velocity applies to unsaturated flow; it is assumed that a leak
would not be of such magnitude as to produce saturated conditions beneath the transfer line
break. The elevation of the transfer line at the hypothetical leak point is 268 feet (81 meters)
above mean sea level (Ref. 11). The water-table elevation is about 252 feet (77 meters) above
mean sea level and capillary water is assumed to extend 5 feet (1.5 meters) above the water
table. The unsaturated zone flow path is therefore assumed to be 11 feet (3.4 meters). The
travel time for ground water flow through the unsaturated zone about 1.6 years.

The flow path in the saturated zone begins at the point where the waste, moving vertically
downward, encounters the water table. The flow path length in the saturated zone is
approximately 1,690 feet (515 meters), and all flow occurs in the Barnwell Formation. The
flow path was divided into five segments, and the travel time along each segment of the flow
path was calculated using the following relationship (Ref. 12):

Vi = KAh (1)
e AL
where:
Vw = velocity of groundwater (units of length/time)
K = hydraulic conductivity (units of length/time)
€ = effective porosity (dimensionless)
Ah = change in hydraulic head (units of length)
AL = change in distance (units of length)

Pumping tests at the DWPF site (Ref. 13) provided a value for transmissivity in the Barnwell
Formation of 3,140 gpd/ft (39 m?/day). At the location of the aquifer test, the saturated
thickness of the Barnwell Formation was 33 feet (10 meters), resulting in a hydraulic
conductivity of 12.7 ft/day (3.9 m/day). The effective porosity was estimated to be 25%. The
gradient of hydraulic head was determined from the water table potentiometric surface map
(Figure 3.4-10). Results of the flow rate calculations are provided in Table 3.4-3. The
groundwater flow time along the saturated flow path is about 5.8 years. Therefore, the total
time for ground water flow from the hypothetical leak point to the nearest surface discharge is
7.4 years. This would also be the travel time for the center of mass of the contaminant plume.

3.4.2.2.4.2 Radionuclides Concentrations at the Groundwater Outcrop

Radionuclides transferred to the DWPF site include the waste tank sludge and supernate,
processed to remove selected radionuclides. Typically, the sludge stream contains higher
concentrations of radionuclides (Ref. 14 and 15); however, *H and !*°Cs are higher in the
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supernate. Only the higher of the two concentrations is listed and used for these calculations*
(Table 3.4-4, columns 2 and 3). [* The reference process for supernate treatment is not
settled; therefore, this radionuclide inventory may be subject to change.]

The waste transfer lines consist of an inner steel pipe within an outer steel pipe to provide
containment. Detection devices for possible leaks are at well-marked field locations, making
massive leaks unlikely. Because a waste leak is unlikely, the contaminant transport analysis
was done for a 1-gallon volume of waste, which can be ratioed to any postulated volume of
leakage.

Table 3.4-4 (column 5) lists the concentration guides for areas with uncontrolled access to
protect individuals from exposure to radiation and radioactive material (Ref. 16). Guide
values are not available for some isotopes; however calculated concentrations of most of these
at the groundwater outcrop are below 1071 Ci/gal.

The three major controls on radionuclide concentration are decay, ion exchange, and
hydrodynamic dispersion. Radionuclides with concentrations less than 10-1° Ci/gal are not
considered further.

The concentration of each radionuclide after 7.4 yr of travel (1.6 yr in the unsaturated zone
and 5.8 yr in the saturated zone) is given in Table 3.4-4 (column 6). No ion exchange or
dispersion was considered when generating the results in this column. Decay half lives were
obtained from standard Tables (Ref. 17). The short half-lives of several isotopes (column 4)
cause them to decay to negligible concentrations during the 7.4-year travel time. However,
the concentration of most radionuclides remains higher than the concentration guides;
therefore, further controls on concentration were considered.

The presence of mica and kaolinitic clays in the subsurface makes ion exchange a significant
factor in controlling the rate of contaminant movement. The distribution coefficient (Ka),
which determines the amount of radionuclide adsorbed, is influenced by many factors such as
pH, solution concentration of the radionuclide, and, for some isotopes, the valence state. Data
are available for some distribution coefficients at SRS (Ref. 18). Values for typical SRS soil
(80% sand and 20% clay) are shown in Figure 3.4-11 for strontium and in Figure 3.4-12 for
cesium.

The pH and concentrations of strontium and cesium in a leak must be known to determine the
distribution coefficients (Kd). The strontium concentration in the sludge transfer line is

1.1 x 10°M. The highest concentration curve on Figure 3.4-11 is 5 x 10*M; however, the
concentration will be lowered by mixing with the groundwater. Thus, the curve for 5 x 10“M
is used in Figure 3.4-11. The cesium concentration is 6.5 x 10°M. The pH of the leaking
material could range from 5.5 to 9.7 (Ref. 19). Using Figures 3.4-11 and 3.4-12, the
following distribution coefficients were estimated: for strontium, Kd - 6; for cesium, Kqd - 60
(pH = 5.5 was used for both radionuclides). Figures 3.4-11 and 3.4-12 show that the Kq
increases as the radionuclide concentration declines, as it will during transport under the
influence of dispersion and dilution. Thus, using the distribution coefficients from the initial
leak concentration is a conservative assumption. Competing ion effects are not considered in
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this analysis due to their complexity. It is expected that this effect will reduce the Kq to a
slight degree. Also, complexing with other agents, which generally reduces the Ka (David
Hayes, Savannah River Laboratory, personal communication, January 1989), has not been
taken into account.

Some Kd information from SRS is also available for plutonium and ruthenium and is shown in
Figures 3.4-13 and 3.4-14, respectively (Ref. 18). Information on Kd versus radionuclide
concentration is not available. For plutonium, the more mobile valence state [Pu(VI)] was
assumed and the K4 determined to be about 20. A Ka of 100 was determined for ruthenium.

Distribution coefficients (Kd) for most radionuclides have not been determined at SRS. Ka
values for many of the remaining radionuclides were obtained from the literature. All Kqa
values used are listed in Table 3.4-4 (column 7), and their sources are indicated.

The flow rate and travel time for each radionuclide was adjusted for K4 by using the
approximation (Ref. 20):

Ve 1
Vw ~ 1+ KR 2)
where:
Ve = average contaminant velocity (units of length/time)
Vw = groundwater velocity (units of length/time)
Kg = distribution coefficient (units of length3/mass)
R = p/ € (units of mass/length3)
where p = bulk density of the soil (units of mass/length3)
€ = effective porosity (dimensionless)

R is about 7.5g/cm?® for SRS soil (p about 1.5g/cm® and € about 0.25).

This relationship was used to calculate the radionuclide concentrations given in Table 3.4-4
(column 8). The same K4 value was applied to movement through the unsaturated and
saturated zones. If a K4 value was not readily found in the literature for a particular
radionuclide, adsorption was assumed not to occur, and the concentration in column 6 was
carried forward unchanged to column 8.

Most radionuclides considered are greatly reduced in concentration due to ion exchange.
Many remain above concentration guides, and hydrodynamic dispersion was calculated to
provide a further control of the radionuclide concentrations.
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Contaminants transported by groundwater are subject to hydrodynamic dispersion due to the
variation in the grain size of porous media and the tortuosity of microscopic flow paths. The
presence of clay layers and the anisotropy of hydraulic conductivity cause dispersion on a
macroscopic scale. The result is a distribution of the contaminant around the center of mass
of contamination. Hence, some radionuclides arrive at the outcrop ahead of the majority;
however, their concentration is lower because of dilution.

Dispersion, which varies spatially because of the variability of subsurface materials, is
difficult to evaluate quantitatively. If a simple hydrogeologic setting is assumed, an
approximation of the migration rate and pattern can be made using the following relationship
(Ref. 20):

2 2 2
COLY,2,t) = M xp( AN S j 3)

B .e —_ [— J—
8(n-t)/Dy-D, . D, 4D, -t 4D,-t 4D,-t

where:
C = concentration distribution of the contaminant mass at time t
t = time
M = mass of a contaminant introduced at a point source
Dx, Dy, Dz = coefficients of dispersion in the x, y, and z directions, respectively
X, Y, Z = distances in the x, y, and z directions from the center of gravity of the

contaminant mass

This equation assumes that the flow velocity is constant and that the contaminant begins as an
instantaneous point source. Although the source is a point, it is assumed to have mass
determined as the product of the radionuclide concentration in the leak and the volume of the
leak.

Dispersion is assumed to vary only with direction and is directly proportional to flow velocity.
The proportionality constant between the velocity and the coefficient of dispersion is the
dispersivity. Based on estimates (Ref. 21), a dispersivity of 1 ft longitudinally was used.

Flow velocities in the transverse directions are negligible, but dispersion will occur due to
diffusion. A value of 0.1 was chosen for the coefficient of horizontal transverse dispersion
and 0.05 for the coefficient of vertical transverse dispersion. Dispersion was neglected in the
unsaturated zone because of the low flow velocity (7 ft/yr) and the short flow path (11 ft). For
this calculation the groundwater velocity in the saturated zone was assumed to average 350
ft/yr based on calculated values ranging from 130 to 365 ft/yr.

At the center of mass (the point of peak concentration), the terms X, Y, and Z will be zero.
Therefore, the maximum concentration is given by (Ref. 20):
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M

C,. = z
™ §(n-1)*,/Dy - D, - D,

where all terms are defined above.

(4)

Substituting values of

M= 1Ci

t = 58yr

Dx = 350 f/yr
Dy = 35 ft¥/yr
Dz = 17.5 fe/yr

1
Cmax = 3
8(m-5.8)%~/350-35-17.5

= 3.5x10°Ci

Thus, the concentration is reduced at the center of mass of the contaminant plume by about
5.5 orders of magnitude.

Dispersion of the contaminant implies that radionuclides are distributed around the center of
mass, with concentrations decreasing from the center toward the edges of the plume. A
leading edge exists that will allow some radionuclides to outcrop at a surface discharge ahead
of the center of mass, having traveled at a greater velocity than the center. The zone in which
99.7% of the contaminant mass occurs will have an elliptical shape with dimensions,
measured from the center of mass, of

3ox = '\,2DX -t
3Gy = ",2DY t
3Gy = 1I2DZ -1

where ¢ equals the standard deviation of the concentration distribution (Ref. 20). Considering
the x direction only, the leading edge of the plume will be about 60 ft. ahead of the center of
the mass as the plume approaches the groundwater outcrop. The arrival time of the leading
edge will be about 5.6 yr. Therefore, although the radionuclides at the leading edge arrive
sooner than those at the center of mass, they will have decayed by almost the same amount. In
this case, earlier arrival time does not mean significantly greater concentration.

The concentration at the leading edge will be greatly reduced due to dilution. If the leading
edge is 60 ft. ahead of the center of mass, then X = 60 ft. Along the center line of the plume,
y=z=0.
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I 60°
c- 3 ex (_—j
8(1-5.6)°+350-35-175 T\ 4.350-56
=~ 23x10°Ci

Thus, the concentration at the leading edge of the plume is reduced by nearly six orders of
magnitude.

Dispersion is assumed to occur in the system; therefore, the concentration in Table 3.4-4
(column 9) are reduced by a factor of 3.5 x 10°. Column 9 lists the concentrations at the center
of mass of the plume as that center reaches the surface discharge of groundwater. Almost all
radionuclide concentrations are reduced to below the concentration guides due to the combined
effects of radioactive decay, ion exchange, and hydrodynamic dispersion. Three radionuclide
concentrations remain above the available concentration guides: °°Sr, 2*°Pu, and *°Pu (by about
43 times, 2.3 times, and 1.3 times, respectively). These concentrations are unlikely because the
distribution coefficients assumed for these radionuclides were conservatively low values
representing the leak concentrations. As dispersion of the contaminant occurs, the
concentration is reduced and the Kd increases. For example, from Figure 3.4-11 it is seen that a
two-order magnitude decrease in concentration (i.e., mixing 1 gal of waste with 100 gal of
groundwater) will increase the *°Sr / Ka at pH 5.5 from the value of 6 used in the analysis to
about Kd equal to 90. This would, in turn, reduce the effective *°Sr velocity from 6.4 ft/yr in the
saturated zone to 0.43 ft/yr and increase the travel time to over 3,000 yr, which is adequate time
for the *°Sr concentration to decay to a negligible amount.

3.4.2.2.4.3 Possible Contamination of Deep Aquifers

The vertical hydraulic gradient is downward between zones 7 and 6. A potential contaminant
reaching the bottom of zone 7 could be transported into zone 6 and then laterally toward
UTRC (Figure 3.4-3). A downward hydraulic gradient also exists between zones 6 and 5.
However, between zones 5 and 4, the vertical hydraulic gradient is upward. Thus, potential
contaminants that reach zone 5 are restricted to this formation and are channeled toward
UTRC. The vertical hydraulic gradients for zones 2 and 3 underlying zone 4 are all upward.

Additional constraints on the vertical movement of a potential contaminant are the clay layers
underlying the DWPF site. Within zone 7 are several layers of clay, sandy clay, and clayey
sands that serve as confining or semiconfining units. These are known as the “tan clay” or
Twiggs Clay lithology. At the base of zone 6 is a clay or sandy clay layer known as the
“green clay.” Besides greatly reducing the vertical velocity of fluid movement, the clays
provide additional ion exchange sites for adsorption of potential contaminants.

3.43 GEOLOGY AND SEISMOLOGY

3.4.3.1 Basic Geologic and Seismic Information

The site region, defined as the area within a 200 mile radius of the center of SRS, includes
parts of the Atlantic Coastal Plain, Piedmont, Blue Ridge, and Valley and Ridge
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physiographic provinces. SRS is located on the upper Atlantic Coastal Plain in the Aiken
Plateau. The crystalline basement beneath SRS consists of Precambrian/Paleozoic
metamorphic and igneous rocks similar to those found in the Piedmont.

3.43.1.1 REGIONAL GEOLOGY

For a detailed discussion of the basic geologic and seismic information for the site region, see
SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3), which includes
the following topics:

o Physiography

e Geologic History

o Blue Ridge Stratigraphy, Lithology, and Structure

o Piedmont Stratigraphy, Lithology, and Structure

e Atlantic Coastal Plain Stratigraphy, Lithology, and Structure

e Tectonics

e Potential Ground Disturbances
343.1.2 SITE GEOLOGY

Most information pertinent to the geology and seismology of SRS also applies to DWPF. For
details of geological features in the immediate vicinity of H-, S- and Z-Areas, see SRNS-IM-
2013-00019, Site Information and Program Description (Ref. 3).

3.4.3.2 Vibratory Ground Motion

3.43.2.1 GEOLOGIC CONDITIONS OF SRS

The Coastal Plain section at SRS consists of a south-easterly thickening wedge of Cretaceous
and younger sediments. The thickness of the sediments range from about 600 feet thick near
the northwestern boundary of SRS to about 1200 feet thick near the southern boundary.
Beneath this section is a pre-Cretaceous unconformity that developed on a basement
consisting of two geologic terranes: 1) the Triassic-Jurassic Dunbarton basin, crystalline
terrain of metamorphosed sedimentary and igneous rock that may range in age from
Precambrian to late Paleozoic; and 2) crystalline terrain of metamorphosed sedimentary and
igneous rock that may range in age from Precambrian to late Paleozoic (Ref. 29).

For additional details refer to SRNS-IM-2013-00019, Site Information and Program
Description (Ref. 3).
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3.4.3.2.2 UNDERLYING TECTONIC STRUCTURES - GENERAL SITE

The major tectonic structures underlying the SRS consists of basement faults, some of which
have propagated upward into post-Cretaceous sediments. For additional details refer to
SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).

3.4.3.2.3 BEHAVIOR DURING PREVIOUS EARTHQUAKES

Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).
3.43.24 ENGINEERING PROPERTIES OF MATERIALS UNDERLYING THE SITE
Refer to Subsection 3.4.3.4.2 below.

3.4.3.2.5 EARTHQUAKE HISTORY

Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).
3.43.2.6 MODERN STRESS REGIME

Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).
3.4.3.2.7 CORRELATION TO EPICENTERS WITH GEOLOGICAL STRUCTURES
Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).
3.4.3.2.8 IDENTIFICATION OF ACTIVE FAULTS

Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).
3.43.2.9 DESCRIPTION OF CAPABLE FAULTS

Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).
3.4.3.2.10 MAXIMUM EARTHQUAKES

Investigations of historical seismicity, together with detailed seismic monitoring and geologic
studies, have resulted in three hypothetical earthquakes, two of which control the seismic
hazard at SRS. One of these two earthquakes is a local event comparable in magnitude and
intensity to the Union County (SC) earthquake of 1913 but occurring within a distance of
about 25 km of the site. The other is an earthquake representing a potential repeat (similar
magnitude and location) of the 1886 Charleston earthquake.

Except for clusters of seismicity in Bowman and Middleton Place, sporadic and apparently
random low-level seismicity is prevalent in the Coastal Plain and Piedmont geologic
provinces. Regulatory guidance (10CFR100, App. A) prescribes a design basis local event to
occur at a random location within a specified radius of the site. Recent geologic
investigations conducted to determine and limit the age of deformation of known basement
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faults at SRS indicate no post Eocene faulting. Consequently, deterministic analyses have
assumed source properties for a random local event with on-site faults considered not capable.

Although more recent seismic hazard characterization information is now available, the
URS/Blume (1982) (Ref. 30) was used for seismic characterization of the site (and DWPF) in
the early 1980s.

The recommended site acceleration and spectra in the Blume analysis were based on
conservative assumptions on the occurrence of specific earthquakes. Two hypothetical
earthquakes consistent in size with earthquakes that have occurred in similar geologic
environments were found to control SRS spectra and peak ground motion: a hypothesized
local earthquake causing an estimated site peak ground acceleration (PGA) of 0.10g, and a
hypothetical distant earthquake (1886 Charleston-type) causing an estimated site PGA of
<0.1g. For added conservatism, the site PGA was doubled to 0.2g. Local and distant
earthquake response spectral shapes were derived from statistical analyses of primarily
Western U. S. earthquake data and scaled to the 0.2g PGA.

From this study, URS/Blume completed deterministic estimates of ground motion for SRS
facilities including DWPF (Ref. 30).

Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3) for
additional details.

3.4.3.2.11 SAFE SHUTDOWN EARTHQUAKE

The URS/Blume report defined the Safe Shutdown Earthquake (SSE) as the maximum
postulated earthquake producing the greatest peak ground acceleration. The SSE for SRS and
thus for the DWPF structures was established as 0.20g horizontal acceleration based on the
spectral shape given in the Blume analysis (Ref. 30).

The SSE discussed above was redefined as the Design Basis Earthquake (DBE) for the SRS
site including the DWPF structures. The DBE for the SRS has a free field horizontal peak
ground acceleration of 0.20g. The free-field peak ground acceleration in the vertical direction
is two-thirds the horizontal or 0.13g.

For the geotechnical liquefaction analyses, other design earthquake spectra were used (see
Section 3.4.3.4.9).

3.4.3.2.12 PROBABILISTIC ASSESSMENT OF PEAK GROUND ACCELERATION

As part of the Blume report (Ref. 30), a probabilistic analysis was performed to assess the
recurrence of the peak ground acceleration at SRS. The analysis used the geographic
distribution of earthquakes and their recurrence rates as a function of epicentral intensity, the
variation of intensity with epicentral distance, and the peak ground acceleration as a function
of intensity. Three source regions, following the tectonic province definition above, were
used with the Charleston seismic zone having two configurations. The mean annual rates
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equal to or exceeding peak, free-field accelerations of 0.10 g and 0.20 g were, respectively, 2
x 107 and 2 x 10, Probabilities of exceeding accelerations of 0.10 g and 0.20 g in any
interval of 50 years were 10 % and 1 %, respectively.

3.4.3.2.13 DESIGN RESPONSE SPECTRA

Response spectra were derived (Ref. 30) from statistical analyses of selected sets of strong-
motion accelerograph data recorded in California and then related to the SRS site as resulting
from a Charleston-type event and a local event. The DBE response spectra envelope both of
these controlling events. The shapes of the DBE response spectra are given in Figure 3.4-15
and is normalized to a zero period acceleration of 1.0 g. For structural design purposes, these
spectra should be appropriately scaled to 0.20 g in the horizontal direction and 0.13 g in the
vertical direction. For the geotechnical liquefaction analysis, other design spectra were used.

3.4.3.3 Surface Faulting

No surface faults have been identified at SRS as discussed in SRNS-IM-2013-00019, Site
Information and Program Description (Ref. 3).

3.4.3.3.1 GEOLOGIC CONDITIONS OF THE SITE
Refer to SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3).

3.4.3.4 Stability of Subsurface Materials

3.43.4.1 GEOLOGIC CHARACTERISTICS

The complex sequence of marine and terrestrial sediments that underlie SRS produces
significant local variations in the stability of subsurface materials. Numerous geotechnical
and geological investigations have been performed at DWPF to characterize the in-situ static
and dynamic properties of the soils. These investigations have led to conclusions concerning
the stability of foundation soils in terms of liquefaction potential and structure settlement.
Details of geotechnical considerations considered in the design and construction of the DWPF
can be found in Ref. 28 (1984). Mueser, Rutledge, Johnston & DeSimone, Consulting
Engineers (Ref. 28), compiled this report from reports, drawings, soil samples, and other
materials supplied for the DWPF by D’ Appolonia Consulting Engineers; Bechtel National
Inc.; Geotechnical Engineers Inc.; URS Blume & Associates.

Details of geotechnical considerations considered in the design and construction of the Glass
Waste Storage Building #2 (GWSB#2) can be found in Ref. 66. GWSB#2 was constructed as
a PC-2 structure (Ref. 67), whereas GWSB#1 was constructed as a Category 1 structure. The
following sections detail the design considerations for Category 1 structures and therefore
addresses only GWSB #1.

Geologic features which may affect the stability of soils and rock beneath the DWPF
foundations during the vibratory motion associated with earthquake design criteria are
discussed in the following subsections.
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3.4.3.4.1.1 Subsidence, Uplift, and Collapse

Based on a review of soil boring logs and drilling records, Mueser, Rutledge, Johnston &
DeSimone conclude that some dissolution of the calcareous sands has occurred at depths of
approximately 100 to 150 feet, resulting in possible voids or leached zones. A grouting
program was deemed necessary for all Category I structures, and was accomplished as
detailed in Ref. 33.

Subsidence due to removal of groundwater has not occurred at the Savannah River Site
(SRS). No large-scale underground pumping is included with the permanent facilities;
therefore, it is anticipated that subsidence due to groundwater withdrawal will not occur
during the life of the facility. No extensive excavation below the permanent groundwater
level was required during construction operations for the DWPF facilities.

Within 5 miles of the site, excavation has been limited to construction of other facilities or
borrow areas for construction. The borrow areas are local and shallow and do not pose a
hazard to the site. No economically significant mineral deposits exist near or beneath the site,
and no future mining activity is expected in the site area.

3.4.3.4.1.2 Deformational Zones

No joints or faults were found at the DWPF site, although faults have been found within the
boundaries of the SRS (see Reference 3, SRNS-IM-2013-00019, Site Information and
Program Description). These faults are not considered capable, as discussed in detail in
Section 3.4.3.2. Faults inferred from the seismic reflection survey were determined not to be
capable, and these are discussed in Subsection 3.4.3.4.3.

A pervasive joint or fracture within SRS is suggested by angular drainage patterns and aligned
sinks.

No evidence of large-scale shearing or folding has been found at DWPF.

3434.13 Zones of Alteration and Structural Weakness

The occurrence of soft or underconsolidated zones and rod drops has been described in
numerous drilling reports throughout the central portion of SRS (Ref. 34). The prevailing
assumption for the cause of these zones has been the dissolutioning of carbonate rich
sediments, resulting in vugular porosity where drill rods meet little penetration resistance.
Frequently associated with these soft zones are localized beds of silica-cemented sand or
indurated limestone where drilling becomes much harder. For example, during drilling in the
General Separations Area (E-, F-, H-Areas), drillers reported rod drops immediately after
drilling through a well cemented siliceous or calcareous bed or beds (Ref. 34).

The silica cemented horizons are generally noted at, or near, the top of the Santee Formation
at, or near, an unconformity that separates the Santee Formation from the overlying Dry
Branch Formation (Ref. 34). These cemented horizons at SRS appears to be similar to
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cemented zones found in modern coastal environments where rapid lateral and vertical
movement of fresh to saline ground water occurs, causing a high variability in cementation
(Ref. 34). Thus, it is possible that the upper stiffer horizons and the underlying soft zones,
may have developed during the unconformity at the end of Santee times. In fact, the hard
zones may act as a resistant cap for the underlying soft zones, allowing them to persist as
pockets of underconsolidated material through geologic time (Ref. 34).

Three dimensional mapping of soft zones at H-Area, indicate that low penetration resistances
tend to occur in the Santee Formation in a fine to medium-grained, silty or clayey quartz sand
having varying amounts of shell fragments and cementation. At H-Area, this sandy facies
appears to flank a more competent limestone body in a band that is 100 to 200-feet wide.
Although the soft zones shadow the limestone in a relatively wide band, individual
penetration resistances within this band are highly variable. The soft material appears to
occur as pockets or stringers of calcareous material that are laterally discontinuous. For
example, at H-Area, no lateral continuity in standard penetration tests (SPT) N-values and
cone penetration tests (CPT) penetration resistances were found that exceeds a few tens of
feet. This high degree of variability is probably attributable to either rapid lateral and vertical
changes in the amount of carbonate originally deposited or to subsequent changes in the
diagenetic history of the sediments, or both (Ref. 34).

3434.14 Residual Stresses in Bedrock

The site is not directly affected by unrelieved residual stresses in bedrock, because the top of
bedrock lies approximately 900 feet beneath the surface.

3434.1.5 Unstable Soils and Rocks

Engineering investigations indicated that subsurface materials generally consist of sands and
clayey sands to a depth of approximately 70 feet below ground surface (bgs) (210 feet mean
sea level [msl]) and interbedded sands and clays to greater depths. The sands above 210 feet
msl are typically medium dense based on SPTs resistance (SPT blowcounts of 10 to 30), with
a few SPT values below and above this range. Below 210 feet msl the sands are denser on
average than those above 210 feet msl and are typically very dense below 135 feet msl. Clays
and silts generally vary in consistency from stiff to very stiff.

The sands and clayey sands throughout the subgrade will not experience liquefaction
(significant strength loss leading to bearing capacity failures) and will not develop cyclic
mobility (significant cyclic or accumulated deformations) under the earthquakes analyzed
with a peak horizontal ground surface acceleration of 0.20 g (Subsection 3.4.3.4.8).

3.43.42 PLOTPLANS

The S-Area is shown in relation to other site features in Fig. 3.4-16. The plan locations

(D’ Appolonia) of all borings drilled for the site investigation are presented in Figures 3.4-17
and 3.4-18. The locations of 23 piezometers installed to monitor groundwater levels in the
four aquifers penetrated by the site geotechnical borings are also shown in the figures.
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Existing site monitoring wells are shown in plan in Figure 3.4-4. All other piezometer wells
and borings have been cemented and closed and casings pulled. The drawings also show the
outlines of all DWPF structures, including the following Category I structures: vitrification
building, sand filter, fan house, and glass waste storage building #1. The tunnels that connect
the structures listed above are Category I up to the emergency exhaust port between the fan
house and the stack.

Boring locations were selected to provide overall coverage of the site and to provide optimum
coverage of Category I structures. The logs from the borings have been used to develop
subsurface cross sections, which show in detail the stratigraphy underlying the site. The plan
locations of the (D’ Appolonia) sections are shown in Figure 3.4-17 and Figure 3.4-18. The
corresponding D’ Appolonia cross sections (a-a through m-m) are shown in Figures 3.4-19
through 3.4-28. Additionally, the plan location of Mueser sections is shown on Figure 3.4-29,
with the corresponding cross sections given on Figures 3.4-30 through 3.4-34.

Piezometric heads recorded in the various piezometers are provided in Figures 3.4-35 through
3.4-38.

3.4.3.43 SOIL AND ROCK CHARACTERISTICS

3.4.3.43.1 Field Explorations

Field explorations consisting of drilling, sampling, in situ testing, and geophysical testing
were conducted in three phases between January 1978 and August 1981 at the DWPF site.
The last phase, which was conducted in 1981, was necessitated by a relocation of major
structures at the site. All drilling, sampling, in situ testing, and piezometer installations were
performed using standard specifications and procedures and a quality assurance program
developed for subsurface exploration. Audits of the drilling equipment, soil and geophysical
testing equipment, soil sampling and sample-handling procedures, and logging of borings and
samples were conducted to assure that the field exploration program complied with the
requirements of Appendix A to 10 CFR 100 (Ref. 36). Logs of the individual borings are
presented in Reference 35.

Approximately 140 borings, including cross-hole and piezometer borings, were drilled for the
field investigation. The boring locations are shown in plan (D’Appolonia) in Figures 3.4-17
and 3.4-18 along with the proposed plant layout, existing site contours, and the locations
where SPT borings were performed in accordance with the American Society for Testing and
Materials (ASTM) designation D1586. The sampling intervals for the SPT borings were
generally performed at 2.5 feet intervals between 15 and 150 feet, at 10 feet intervals from
150 to 300 feet, and as necessary to define changes in the materials penetrated.

3.4.3.4.3.2 Soil Sampling

Immediately upon removal from the boring, the split-barrel sampler was carefully
disassembled and a visual classification of the sample was made. The most representative and
least disturbed portion of the sample, approximately 5 inches in length, was immediately
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placed in a glass jar. The jar samples were sealed and labeled in accordance with the quality
assurance requirements of D'Appolonia Consulting Engineers, Inc., and subsequently shipped
to the soils laboratory for classification and index testing.

Undisturbed soil or sediment samples were obtained by means of , 1) conventional thin-
walled tubes, in accordance with ASTM D1587, 2) pitcher barrels, and 3) Osterberg samplers.
Undisturbed samples were taken for determining in situ substrate properties and for obtaining
design parameters for settlement, bearing capacity, and liquefaction analyses. Approximately
200 undisturbed samples were obtained at the DWPF site. The samples were labeled in
accordance with quality assurance requirements and shipped to the soils laboratory. Prior to
shipment, the undisturbed samples were x-rayed at the SRS. All of the samples subjected to
strength of compressibility testing were also x-rayed after arrival at their destination to check
for disturbance in transit.

3.4.3.4.3.3 Cone Penetration Tests

Using a mechanical friction-cone penetrometer, CPT soundings of the “Upland unit” and
Tobacco Road and Dry Branch Formations was conducted at six locations in accordance with
ASTM D3441. The purpose of the soundings was to provide a more continuous penetration
profile than that provided from SPT results and to develop correlations between CPT data and
other field and laboratory test data. CPTs were conducted for borings BH 17, BH 21, BH 43,
BH 46, BH 70, and BH 86 at an offset of approximately 15 feet from previously completed
SPT boring locations. The depth of penetration ranged from approximately 59.7 feet in
boring BH 70 to 98.4 feet in boring BH 43.

CPT results are presented with other boring log data and show profiles of cone resistance (qc)
and friction ratio (Rf) that reflect the variation of cone and friction sleeve resistance with
depth. In general, qc is used as an indirect measure of material strength and compressibility,
while Rf is used as an indirect identifier of soil composition (e.g., predominantly sandy or

clayey). This data for borings BH 17, BH 21, BH 43, BH 46, BH 70, and BH 86 is presented
in Reference 35.

3.4.3.4.3.4 Pressuremeter Tests

Pressuremeter tests were performed at boring locations BH 63, BH 86, and BH 90 at the
DWPEF site. Most of the actual testing was performed in cross-hole seismic survey listing
borings BH 63L.21, BH 86L2, BH 86L1, and BH 90L2, although two tests were conducted in
boring BH 90. The pressuremeter tests were performed to provide representative modulus
values for use in foundation analyses. Boring BH 86 is located at the Glass Waste Storage
Building #1, and boring BH 90 is located at the Vitrification Building.

Thirty-six pressuremeter tests were conducted at the DWPF site at depths below ground
surface ranging from 9.4 to 281.7 feet. The results of each test are plotted in Reference 35.
Although in practice three volume readings are made for any particular pressure increment
(15, 30, and 60 sec after a pressure increment is applied), only the volume at 60 sec is plotted
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against the applied pressure. Generally, the deformation is time dependent, and the volume
reading at 30 sec will differ from the volume measured 60 sec after the pressure has been
increased. The difference in volume between the 30- and 60-sec readings is termed the creep
volume. The creep volume is also shown in the test plots.

The pressure and volume readings obtained in the field were corrected for volume change,
pressuremeter inertia, and pressure head before the plots were constructed. Elastic moduli
were determined from the corrected pressuremeter test results using a procedure developed
(Ref. 52) to reconstruct the elastic portion of the in situ stress-strain curve. The pseudo-elastic
portion of each pressure-volume curve (represented by the linear part of each pressure-volume
curve following the initial upward curve) was used for this purpose. Values of the in situ
elastic modulus for each test are indicated on each pressure-volume curve (Ref. 37). They
range from 234 ksf at 76.7 feet deep in boring BH 63L2 to 1,700 ksf at 261.7 feet deep in
boring BH 63L2. In general, the results of these tests indicate an in situ elastic modulus of
approximately 400 to 500 ksf at elevation 240 feet msl, a gradual decrease in modulus to 250
to 400 ksf at an approximate elevation of 180 feet msl to 150 feet msl, and then a gradual
increase to a value of 1,500 to 1,700 ksf at an approximate elevation of 80 feet msl to 50 feet
msl. Below these elevations, the results are somewhat scattered (Ref. 35).

3.4.3.43.5 Piezometer Installations

Twenty-three piezometers were installed at the locations shown in Figure 3.4-4. Piezometers
BH 3, BH 4, BH 6, BH 6B, and BH 15 were, in general, installed by casing the drilled boring
with 4-inch diameter steel casing, cleaning the cased borehole, installing a slotted polyvinyl
chloride (PVC) pipe and PVC riser pipe in the boring to the desired depth, and simultaneously
removing the 4 inches-diameter casing while placing the gravel packing, sand, and bentonite
balls. Following placement of the bentonite balls, grout (two parts sand and one part cement)
was pumped into the casing, and the casing was retrieved.

Piezometers BH 17A, BH 21A, BH 23A, BH 48B, BH 50A, BH 62A, BH 75A, BH 82, and
BH 98 A were installed by advancing the uncased borings to the desired zone, installing a
slotted PVC well point and PVC riser pipe in the boring, and placing the gravel pack, sand,
and bentonite-ball seal in the annular space between the wall of the boring and the PVC
standpipe. Following placement of the bentonite-ball seal, grout was pumped into the annular
space from the top of the bentonite-ball seal to the ground surface.

Piezometers at borings BH 2, BH 8, BH 9, BH 13, BH 20, BH 20, BH 64A, BH 69A, and BH
86 were installed using an alternate procedure, which was adopted because of problems
encountered in retrieving 4-inches-diameter casing from the borings at depths greater than 200
feet. In general, the alternate procedure consisted of placing a 4 inches (outside diameter)
PVC pipe (with the bottom end sealed with a pipe cap) in the uncased boring, grouting and
annulus between the PVC pipe and boring wall, allowing the grout to set, drilling through the
PVC seal, and installing the piezometer components as described above. Sensitivity testing
was performed on all piezometers after the piezometric heads had stabilized. Results of these
tests indicated that all piezometers responded to applied changes in piezometric heads and
thus were properly installed.
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3.4.3.43.6 Seismic Surveys

A seismic reflection survey was conducted at the DWPF site to provide contours of bedrock
surface and other significant reflecting horizons and also to determine the presence and extent
of any subsurface faulting. Seismic line coverage of the site included the areas where
Category I buildings were to be constructed and additional lines to tie in with an existing
survey conducted prior to the DWPF site investigation. The seismic reflection survey is
described below.

Seismic Reflection Survey

A seismic reflection survey was conducted at the DWPF site to determine the configuration of
the crystalline bedrock surface and overlying sediments and to delineate any faulting (Ref.
35).

A plan view of seismic coverage over the site area is presented in Figure 3.4-39. Lines S-1,
S-2, and S-3 run site north-south, and lines S-4, S-5, S-6, and S-7 run site east-west and tie the
north-south lines together. Lines S-1 and S-6 intersect at the Vitrification Building. In
addition, line S-4 extends to the west across Road 4 to intersect line S-8. Line S-8 (Figure
3.4-40) parallels Road 4 and intersects existing seismic coverage near deep rock boring 7
(DRB 7). Total linear coverage is approximately 27,000 feet.

In general, three reflecting horizons of good to excellent quality have been mapped across and
tied into all seismic lines (Ref. 35):

e Yellow horizon corresponding to the crystalline bedrock surface or to the
unweathered crystalline rock surface, ranging in time from 210 to 250 milliseconds
(ms) or in elevations from -680 to -800 feet (msl).

e Blue horizon corresponding to a Cretaceous sedimentary interface above the bedrock
surface and ranging in time from 170 to 190 ms or in elevation from -560 to -620
feet(msl). Further identification cannot be made due to a lack of boring control.

e Red horizon corresponding to an Upper Cretaceous sedimentary interface above the
blue horizon and ranging in time from 130 to 150 ms or in elevation from -440 to -
500 feet(msl). Further identification would require additional boring control.

The site is characterized by an southeast dipping crystalline bedrock surface or unweathered
bedrock surface with ranges in elevation from -680 to -800 feet(msl). Reverse faulting of the
bedrock surface occurs in three places, as documented in Reference 35.

Cross-Hole Seismic Survey

A cross-hole seismic survey was conducted at the DWPF to determine in situ seismic
compressional (P) and shear (S) wave velocities in the subsurface. This survey provides
detailed seismic velocity information at close vertical intervals of 5 feet from the surface to a
depth of 300 feet. Cross-hole surveys were conducted in borings BH 38, BH 63, BH 86, and
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BH 90. Boring BH 86 lies under the Glass Waste Storage Building #1, and boring BH 90 lies
under the Vitrification Building.

The P- and S-wave velocities were used to determine the elastic parameters of the site
subsurface materials, which is essential for evaluating structure and foundation behavior
under seismic excitation.

Wave velocities and a stratigraphic log for borings BH 38, BH 63, BH 86, and BH 90 are
shown in Reference 35. A review of this data revealed that the trends in both P-wave and S-
wave velocities were statistically similar among the four test locations.

In order to characterize the subsurface in terms of S-wave velocities, all of the data from the
four locations were evaluated together. Trends in S-wave velocity versus elevation were
defined by linear regression analyses. Based on this analysis, the subsurface was divided into
eight layers, with a representative shear wave velocity for each layer. The relationship of the
typical subsurface profile to S-wave velocities is shown in Figure 3.4-41. At shallow depths,
where the S-wave velocities vary significantly and where the impact of shear moduli values is
most important for design, layer thicknesses were small (10 to 15 feet). At deeper elevations,
larger layer thicknesses (25 to 105 feet) were used to characterize the S-wave velocities.

P-wave velocities showed marked increases to values in the range of 5,000 to 6,000 feet/sec at
approximately elevations 235 feet msl to 245 feet msl. This increase indicates the
approximate elevation of the groundwater level. An increase in material stiffness, represented
by the increase in S-wave velocity at a depth of approximately 130 feet, (elevation 160 feet
msl) corresponds to the much denser material found near the top of the Congaree Formation.

Down-Hole Seismic Survey

As a supplement to the cross-hole survey a down-hole survey was performed at the site. This
work was done to determine if significant vertical anisotropy exists in the elastic properties of
the materials at the test locations. The survey was performed at the same boring locations as
the cross-hole survey: BH 38, BH 63, BH 86, and BH 90.

The geometry of the down-hole test results in a practically vertical travel path from the
impact source to the down-hole geophone (Ref. 35). Average shear wave velocities are
determined for the path between the source and the receiver by accurately measuring shear
wave transit times.

The down-hole technique is limited to sampling the volume of material in the immediate
vicinity of the borehole; but, due to the nature of the vertical travel path, it is insensitive to
refraction effects and therefore can delineate thin, low-velocity layers. Also, measurement of
velocity in a vertical sense of propagation supplies a field measure of vertical to horizontal
anisotropy when compared with results of the cross-hole test at the same elevation. However,
the depth of investigation of the down-hole technique is limited, because of the ever-
increasing separation of the seismic source (generally a sledge hammer blow to a mass in
contact with the ground) and the down-hole geophone.
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Data obtained from BH 96 were not as high quality as data from the other test locations.
Interpretation of the data was difficult and yielded inconsistent results thus, these data are not
presented.

Measured S-wave velocities using the down-hole technique are in close agreement with the
values obtained using the cross-hole technique (Ref. 35). This implies that, for small strains,
no significant vertical anisotropy exists in the vicinity of borings BH 38, BH 63, and BH 90.
Note that the down-hole S-wave velocities have been three-point averaged to remove the
inherent data scatter of interval measurements. The amplitude of the P-waves was too small
to give repeatable results, so no P-wave data are presented. S-wave data were obtained to a
depth of 60 feet. Below this depth, the S-wave amplitude became too small to allow
determination of wave arrivals.

3.4.3.4.3.7 Geophysical Borehole Logging

Geophysical borehole logging was performed immediately following completion of coring.
Four types of logs were obtained: natural gamma radiation, spontaneous potential, single-
point resistance, and caliper. Caliper logs were not obtained in every boring logged. The
geophysical logs are extremely sensitive to subsurface lithology, and the data obtained have
been used in conjunction with the boring logs to provide a more accurate engineering and
lithological definition of the subsurface stratigraphy. The geophysical logs are documented in
Reference 35.

3.4.3.44 PROPERTIES OF UNDERLYING MATERIALS

3.4.3.44.1 Soil Stratigraphy

Soils at DWPF consist of coastal plain sediments that are about 900 feet thick. These
sediments range in age from late Cretaceous (about 65 million years ago) to Holocene. The
Coastal Plain sediments are predominantly clastic and overlie a sequence of folded and
faulted metamorphic rocks of Precambrian/Paleozoic age (up to 570 million years old) (Ref.
35). The sedimentary sequence at DWPF consists mainly of interbedded, clayey sand, sand,
silt, and silty clay with some thin carbonate units. The structural properties of the various
distinguishable lithologic horizons are discussed in terms of stratum that are delineated by
elevation, thickness and unique characteristics (physical, chemical and mineralogical
composition).

Five shallow, geologic formations were identified by the initial seismic and geophysical
surveys performed at DWPF (Ref. 35). These formations were drilled and sampled during
subsequent foundation explorations. In descending order, they are: Hawthorne, Barnwell,
McBean, Congaree, and Ellenton Formations. New nomenclature has evolved for the various
strata and are presented in Figure 3.4-42. Table 3.4-5 illustrates the relative positions of these
strata at the DWPF site. The strata of major concern in foundation design for the proposed
structures are the sand and clay layers within the “Upland Unit,” the Barnwell Group, and the
Santee Limestone. The stresses imposed by the DWPF structures are relatively insignificant
at depths greater than 150 feet below ground surface (bgs), the approximate depth of the base
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of the Santee Formation. The consistently high penetration resistances encountered in the
underlying Congaree and Black Mingo strata indicate these are incompressible for practical
purposes.

Strata above elevation 110 feet msl, which extend to depths approximately 170 feet bgs, have
been grouped into nine general strata based on SPT testing, as presented in the cross sections.
The locations of Category I foundations are shown in the cross sections. The stratification
shown on these sections is intended to depict relative depths and thicknesses of the general
strata and is not an attempt to define actual interbedding, which is undoubtedly more complex.
The change from one stratum to another is also more gradual than shown on the sections.
Figure 3.4-43 defines terminology used for the stratum descriptions. The term “compact” is
synonymous with the term “dense” used elsewhere in Subsection 3.4.3.5. These terms are
accepted engineering designations used to describe the relative compactness of granular,
nonplastic unconsolidated sediments and soils. The general strata are summarized below in
the typical order of sequence with depth.

Stratum S1--Clayey Sand: Medium compact to compact red-brown and yellow clayey fine to
coarse sand, trace gravel, to fine to coarse sand, some clay; occasionally interbedded with
sandy clay and sandy silt. Stratum S1 extends from the ground surface to depths of 20 to 45
feet bgs (260 feet msl to 235 feet msl). Organic silt lenses exist at the ground surface and are
up to 2 feet thick in topographic depressions such as encountered in boring 65. The clay
content of the stratum appears to decrease below depths of approximately 20 feet bgs (260
feet msl). SPT values typically range from 10 to 50 blows/feet averaging approximately 20
blows/feet. Occasional SPT values less than 10 blows/feet were measured in the upper 5 feet.
SPT values greater than 50 blows/feet were occasionally measured throughout the deposit;
these high blowcounts are probably indicative of the presence of gravel. Natural water
contents typically vary from 15 to 25%.

Stratum S2a--Sand, Trace Silt: Medium compact to compact brown, red, and yellow fine to
medium sand with trace silt and gravel, occasional clay lenses. Layers of this predominantly
clean sand were found underlying and interbedded within the clayey sand of stratum S1.
Below stratum S1, between elevations 200 feet msl and 240 feet msl, continuous layers of
clean sand vary from 5 to 35 feet thick; discontinuous interbedded layers of this stratum are
typically 5 feet thick. SPT values range from 4 to 50 blows/feet but are typically on the order
of 20 to 25 blows/feet. Approximately 5% of the SPT results recorded within this stratum are
less than 10 blows/feet; however, no continuous loose layers were encountered. Natural water
contents range from 11 to 26%, averaging approximately 22%.

Stratum C-2--Stiff Silty Clay: Stiff tan and white silty clay to clayey silt with trace fine sand.
Stratum C-2 consists of discontinuous clay layers below strata S2a and S2b between
elevations 200 feet msl and 210 feet msl. Within site limits, the deposit ranges from 2 to 10
feet thick; the range in thickness under Category I structures is approximately 2 to 5 feet. SPT
values vary from 9 to 27 blows/feet. Natural water contents average 53%.

Stratum S3a--Sand, Some Clay: Medium compact to very compact brown and yellow fine to
medium sand, some clay, trace calcareous shell fragments; occasionally interbedded with silty
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clay and sandy silt. The surface of stratum S3a is between elevations 195 feet msl and 215
feet msl. This 5- to 50-feet-thick deposit is interlayered with strata S3b and S3c. In Dry
Branch Formation, stratum S3a is medium compact to compact with SPT values from 10 to 40
blows/feet. Natural water contents of the upper layers typically vary from 20 to 30%,
averaging approximately 23%. In the Santee Formation, SPT values typically range from 10
to 60 blows/feet. Occasional penetration resistances as low as 2 blows/feet were recorded.
However, samples with low blowcounts are isolated occurrences. Occasional interbedding
with silty clay and sandy silt as well as traces of calcareous shell fragments occur within
stratum S3a in the middle and lower portions of the Santee Formation. In borings 84 and 62P,
four and six samples, respectively, reacted positively to dilute HCI, indicating the presence of
calcium carbonate. Natural water contents in the middle and lower portions of the formation
range from 25 to 35% with an average of approximately 30%.

Stratum S3b--Sand, Trace Clay, and Silt: Medium compact to very compact brown and
yellow fine to medium sand, trace clay and silt with trace interbedded sandy clay, clay, and
silt. Relatively clean sands of stratum S3b are interlayered with the strata S3a and S3c. Layer
thicknesses vary from 5 to 40 feet; the thickest layers appear to be near the top of the Santee
Formation. SPT values typically vary from 15 to greater than 100 blows/feet, averaging
approximately 35 blows/feet. Isolated instances of SPT values less than 10 blows/feet occur;
however, continuous layers of loose material do not appear to be present. Natural water
contents range from 20 to 30% with an average of approximately 25%.

Stratum S3c--Sand, Some Silt: Compact yellow-brown sand with some silt, trace clay.
Stratum S3c occurs in lenses 5 to 10 feet thick. SPT values vary from 12 to 110 blows/feet,
averaging approximately 40 blows/feet. Natural water contents range from 22 to 28% and
average 25%.

Stratum M 1--Silt: Compact to very compact gray and tan silt with trace fine sand and clay.
Stratum M1 was encountered from elevations 130 feet msl to 140 feet msl. This deposit is
discontinuous and appears in lenses 5 to 10 feet thick. SPT values vary from 20 to 40
blowcounts/feet with an average of 35 blows/feet. Natural water contents range from 25 to
40% with an average of approximately 30%.

Stratum S4--Sand: Very compact brown and yellow silty fine to medium sand, to fine to
medium sand, trace silt. The surface of stratum S4 was encountered from elevations 125 feet
msl to 135 feet msl. The stratum is approximately 100 feet thick. SPT values vary from 40 to
greater than 100 blows/feet with an average of greater than 100 blows/feet. Natural water
contents range from 18 to 30% with an average of approximately 25%. Stratum S4
corresponds to the Congaree Formation.

3.4.3.4.4.2 Borehole Grouting

A review of the results of the exploratory boring program indicates that some possible voids
of limited lateral extent may exist between elevations 130 feet msl and 180 feet msl. This
zone occurs primarily in strata S3a, S3b, S3c¢, with minor amounts in M1 and S4. The zone of
possible voids was disclosed in the borings by grout “takes” larger than the theoretical

3.4-29



WSRC-SA-6
Rev 37
November 2018

borehole volumes, low resistance to penetration of the sampling tools, loss of drilling mud,
and positive reaction of some samples upon application of dilute HCI.

Tables 3.4-6 and 3.4-7 summarize the borehole grouting data. Table 3.4-6 includes the
grouted depth, the theoretical borehole volume, number of bags of cement used to grout the
borehole, the calculated grout take, and the grout take ratio. The calculated grout take was
determined assuming one bag of cement yielded 2.12 cubic feet of grout. This average grout
yield per cement bag was confirmed by Girdler Exploration and Foundation, Inc. Grout take
ratios greater than six indicate the presence of voids or leached zones, grout take ratios
between three and six suggest the possible presence of thin zones of leached materials, and
grout take ratios up to three can be attributed to boring diameters enlarged during the drilling
process and wasted grout due to surface overflow. Table 3.4-7 summarizes the additional
indications of voids including rod drops, loose zones noted during drilling, low sat
blowcounts, loss of drilling fluid, positive reaction to dilute HCI, and references to calcareous
materials on field logs.

Because the Vitrification Building imposes a large net area load on its supporting earth
materials, as do the other Category I structures to a lesser extent, there may be some
compression of the substrata resulting in differential building settlement at some time during
the facility's useful life. Because limited zones of void, and/or soft soil were encountered

underneath the Category I structures, a grouting program was completed (Ref. 33). See
Section 3.4.3.4.9.

Boreholes with greater grout takes occurred at the northeast end of the site in the vicinity of
the road intersection north of the Service Building. Because this area was generally outside
the development, a foundation grouting program was not required.

3.4.3.4.4.3 Laboratory Tests

Introduction

Laboratory testing of disturbed and undisturbed samples included the establishment of index
properties, i.e., water content, grain-size analysis and classification, Atterberg limits, specific
gravity, and unit weight. Static testing of undisturbed samples included consolidation testing
of cohesive sediment and soils, one-dimensional compression testing of cohesionless
materials, and consolidated-undrained triaxial tests with pore pressure measurements. One-
dimensional compression testing of compacted sandy materials from the “Upland unit” and
Tobacco Road sand was also conducted to characterize the compressibility of potential
compacted backfill. Static test data have been used to establish the material properties
relevant to the analysis of foundation bearing capacity and the short-term and long-term
stability of excavations. Consolidation and one-dimensional compression test data have been
used in foundation settlement analyses.

Dynamic testing of undisturbed samples include resonant column tests on cohesionless and
cohesive material and both cyclic triaxial and cyclic torsional tests on sand samples.
Resonant column tests were also conducted on compacted Barnwell Group material. The
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resonant column test data were used to determine the shear modulus and the material damping
ratio as functions of the shear strain. This information was subsequently used with the results
of the cross-hole tests to describe the elastic properties of the building substrata under
postulated seismic excitation. Cyclic triaxial and cyclic torsional test data were used to
calculate the liquefaction potential for cohesionless materials.

Standard and modified Proctor compaction tests were conducted using sample trimmings.
Sampled material originating from depths of 10 to 70 feet below grade surface were blended
and tested to provide data for establishing backfill compaction control criteria. A summary of
the static and dynamic testing is presented in Table 3.4-8.

A summary of the individual static and dynamic testing is given below.

Index Properties and Classification

The natural water content (ASTM D2216) was determined for all split-barrel samples, and
each undisturbed sample was subjected to testing. These data, together with the Atterberg
limits, provide a qualitative measure of the consistency of subsurface strata. Natural water
content data for the disturbed samples are presented graphically on the boring logs, while
water contents for undisturbed samples are presented with the specific test results (Ref. 35).

Grain-size analyses were conducted on both disturbed and undisturbed samples. These tests
were performed in accordance with ASTM D422, and the results are shown in Reference 35.
The results are grouped by geologic formation. One hundred twelve grain-size analyses were
conducted on which 30 included a determination of the minus 200 sieve size distribution
using the hydrometer method. This number does not include 12 grain-size analyses conducted
for resonant column and one-dimensional compression testing of compacted soil samples.
These grain-size analyses are presented in Reference 35. Additional analyses (not shown)
were conducted using ASTM D1140 to ascertain the percentage of fines passing a No. 200
sieve for classification by the Unified Soil Classification System (USCS).

The liquid and plastic limits (ASTM D423 and D424), together with the resulting plasticity
index, were determined for selected cohesive samples. Fifty-five tests were conducted on
samples taken from 29 different borings to determine the Atterberg limits and classification of
cohesive materials. These data are grouped by boring and geologic formation. Field
determinations of formations for these figures may not be entirely consistent with the
stratigraphic picks used in Subsection 3.4.3.5. The plasticity charts are shown in Reference
35. The tested samples display a wide range of plasticity characteristics. In general, the
plasticity index is less than 50% while the liquid limit, with four exceptions, is less than 80%.

Specific gravity tests were conducted on 25 samples from 10 borings. The specific gravities
ranged from 2.64 to 2.82. On the basis of these data, a representative value of 2.70 may be
used for all samples.

Average unit weights (Table 3.4-9) were estimated for each stratum to the bottom of the
Santee Formation on the basis of the laboratory classification data.
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Available extruded sections of 39 undisturbed samples retrieved from boring 24 by
D'Appolonia, were reviewed in 1983 by MRJD (Mueser, Rutledge, Johnston, and DeSimone
Consulting Engineers). The undisturbed samples were recovered in June 1981 and
subsequently extruded in the laboratory. After selection of specific samples for testing, the
remaining extruded sections were wrapped in cloth and sealed with paraffin. Although these
samples were dry when reviewed in 1983, they were suitable for visual classification and
index tests.

Individual sample descriptions, unified soil classifications, and sample elevations, as well as
the profile of boring 24 from cross section C-C (Figure 3.4-32), are shown in Reference 35.
Reviewed portions of the samples are noted on the profile. Eight Atterberg limits tests and
nine gradation analyses were performed on representative samples. The results of these tests
are shown in Reference 35. Dilute HCI was applied to all samples during our review; no
reactions were observed.

The variable USCS types of the upper 70 feet below ground surface as shown in the cross
sections demonstrate that this system of sample description is not generally useful for
subsurface mapping of geologic strata. Stratigraphic cross sections are given in Figures 3.4-
19 through 3.4-28 (D’ Appolonia) and Figures 3.4-30 through 3.4-34 (Mueser). Samples 1S
through 5S, between elevations 275 feet msl and 265 feet msl, consist of clayey sand with
layers of sandy clay less than 1 feet thick, while samples 6S and 14S consist of sand with a
trace clay. Occasional layers of red silty clay less than 0.5 inches thick, pockets of brown clay
less than 0.25 in thick, and partings of gray fine sandy clay less than 0.06 inches thick were
also observed in the stratum S1 samples from the upper 30 feet of the soil profile.

The reviewed samples from strata S2a and S2b, between elevations 210 feet msl and 240 feet
msl, are fine to medium sand with some to trace silt. Although these strata appear to be less
complexly interbedded than stratum S1, trace partings and pockets of white fine sand with
some clay were observed in all samples within strata S2a and S2b.

A section from sample 36S was the only available material from stratum C2. This sample is
interbedded silty clay and clayey fine sand. The plasticity indices of the silty clay are high, as
discussed in Reference 35.

The reviewed samples retrieved from elevations 130 feet msl to 200 feet msl demonstrate that
the Santee Limestone includes more sand layers and fewer clay layers than the overlying
strata.

Samples 11P through 13P of the Congaree Formation consist of silty fine sand to sand, some
silt. The upper samples within stratum S4 are fairly consistent with little or no interbedding.

Static Triaxial Tests

Consolidated-undrained (CU) triaxial tests with pore pressure measurements were conducted
to determine the effective shear strength parameters and moduli of selected undisturbed
samples. The results of the 18 CU triaxial test series are summarized in Table 3.4-10 and are
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presented in detail in Reference 35. The tested samples are from the generalized layers within
approximately 150 feet of ground surface at the site.

The strength properties of the upper clayey sand and sand, trace clay or silt were determined
from static triaxial tests on eight samples from the depths between 17 and 42 feet bgs (263
feet msl to 238 feet msl) (Table 3.4-10). An average effective friction angle of 34° with no
cohesion is representative of these medium compact to compact materials.

The strength properties for the undifferentiated silty clay to clayey silt layer separating the
Barnwell Group and Santee Formation occurring between elevations 200 feet msl and 210
feet msl were determined from tests on ST-5 from boring 3. The results indicate an effective
friction angle of 34° with no cohesion. However, occasional low SPT blowcounts and
consolidation test results indicate some weaker zones may occur within this layer. Therefore,
a conservative effective friction angle of 31° with no cohesion is appropriate for use in static
bearing capacity analyses.

Two series of triaxial tests were performed on a blend of sand and some clay from samples
retrieved from boring 24, representing typical backfill at the site. Prior to testing, samples
were compacted to 95 and 100% of maximum modified Proctor dry density; test results
indicate effective friction angles of 35° and 40°, respectively. These test results are presented
in Reference 35 and summarized in Table 3.4-9. Based on these tests, an effective friction
angle of 34° is indicated for use in static analyses for typical site backfill compacted to 95%
of modified Proctor maximum density.

Consolidation Tests

A total of 42 consolidation tests (ASTM D2435-70) were performed on 39 undisturbed
samples recovered from 13 borings. Individual plots of the void ratio versus log pressure
curves are shown in Reference 35.

Results of consolidation tests on undisturbed samples recovered during six previous
subsurface investigations at H-Area were reviewed and correlated with the S-Area data. The
six projects (Figure 3.4-16) are 1,000 to 3,000 feet southwest of the edge of S-Area in H-Area.
Void ratio versus log pressure curves for H-Area and S-Area consolidation tests are grouped
and discussed in Reference 35. The grouping was based on the Unified Soil Classification
System, water content, initial void ratio, and general shape of the void ratio versus log of
pressure curve.

An S-Area consolidation test summary for samples recovered from the “Upland unit” and
Barnwell Group and Santee Formations is presented in Table 3.4-11. Preconsolidation
pressures, compression, and recompression indices were determined using the Casagrande
method. Consolidation tests were performed on three basic USCS types: clayey sands, clean
sands (sand, trace clay, or silt), and silty clays.

Consolidation curves for plastic materials exhibit a characteristic break in slope at the
maximum past pressure (preconsolidation stress). Predominantly nonplastic sandy materials

3.4-33



WSRC-SA-6
Rev 37
November 2018

do not exhibit a similar break in slope. Therefore, preconsolidation stress was estimated only
for the plastic soils.

All S-Area consolidation tests were rebounded at a test pressure approximately equal to
existing overburden stresses. The average slope of the rebounding and reloading cycle for
each test is termed the swelling index (Cs), which is used to estimate settlements at stresses
less than the preconsolidation value. Average Cs values and initial void ratios for each
stratum to the bottom of the Santee Formation are shown in Table 3.4-9.

The material properties profile for H-Area with the S-Area consolidation test data on plastic
material superimposed is presented in Reference 35. The typical S-Area soil, as well as the
average existing overburden stress and proposed increase in stresses below the center of the
Vitrification Building, are also shown.

The general USCS profiles in H-Area and S-Area are similar. Ground surface elevations in
H-Area are somewhat higher, varying between elevations 295 feet msl and 325 feet msl.
Where general site fill is not present in H-Area, the uppermost layer, probably of the “Upland
unit,” consists of still silty and sandy clay with layers of clayey sand. Beneath the clay
stratum, interbedded sands, clayey sands, and sandy clays extend down to between
approximately elevations 180 feet msl and 190 feet msl and are the Tobacco Road Formation.
In four of the H-Area projects, at approximately elevation 190 feet msl, a highly plastic clay
layer was found underlying the Tobacco Road sands. While the surface of this lower clay
layer is approximately 20 feet lower in H-Area than in S-Area, the soil index characteristics
are similar. Where present in H-Area, the clay stratum is 5 to 30 feet thick. Beneath the clay,
clayey sands of the Dry Branch Formation were sampled.

Consolidation tests performed for H-Area investigations on clays and clayey sands recovered
above elevation 190 feet msl from both the “Upland unit” and Barnwell Group generally
showed preconsolidation pressures of 3 to 9 tsf above existing overburden pressures. Water
contents of the materials above 190 feet msl generally varied between 20 and 30%. Below
elevation 190 feet msl, in stratum C2 and the lower Santee clayey sands, occasional zones of
low penetration resistances were encountered. Consolidation tests on undisturbed samples
recovered from these zones indicated preconsolidation pressures close to existing overburden
stresses. Tests on clayey samples below elevation 190 feet msl, and not within low
penetration zones, indicated preconsolidation pressures of 3 to 7 tsf greater than existing
overburden pressures. Natural water contents of plastic samples below elevation 190 feet msl
generally ranged from 30 to 80%. Triaxial shear tests performed on samples from zones of
low penetration resistance showed lower strengths than tests performed on the
overconsolidated materials.

All of the H-Area samples exhibiting low preconsolidation pressures and shear strengths were
recovered below the Tobacco Road in stratum C2 and the underlying Dry Branch clayey
sands. Occasional sandy split spoon samples from the Santee reacted with a weak HCI
solution, indicating the presence of calcareous materials that may be subject to leaching.
None of the clayey materials exhibiting low preconsolidation stresses reacted with the acid. It
is believed that calcareous material may have existed within stratum C2; however, this
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material may have been leached by the downward flow of groundwater. This loss of material
has increased the void space within stratum C2 and reduced its ability to support vertical load,
thereby lowering the apparent preconsolidation stress. The zones are characterized by low
preconsolidation and shear strength generally found as pockets rather than as continuous
layers.

Most of the S-Area tests on clays, like the H-Area tests, exhibited preconsolidation stresses
well in excess of the existing overburden. Two tests, however, indicate the possibility that
portions of stratum C2 do not exhibit significant preconsolidation. One of these tests (sample
ST-6 of boring 10) had a high seating load of 3.5 tsf. Interpretation of this test indicates the
preconsolidation stress is not greater than 3.7 tsf, which is slightly less than the existing
overburden pressure at that boring. Interpretation of the second test (sample ST-5 of boring
47) indicates a preconsolidation pressure of 4.5 tsf, which is approximately 0.5 tsf greater than
the overburden pressure.

The results of tests performed on stratum C2 samples from S-Area are similar to results of
tests on plastic clays encountered at slightly lower elevations in H-Area.

Compaction Tests

To determine the optimum water content and maximum dry densities for the materials that
were ultimately be used as compacted backfill, one standard Proctor (ASTM D698) and 12
modified Proctor (ASTM D1557) tests were conducted on nine combined samples and three
undisturbed samples. These samples, consisting primarily of silty to clayey, fine to medium
sands, were prepared by combining trimmings from undisturbed samples, from combinations
of undisturbed samples, or from previously tested undisturbed samples. The combined
samples were constructed by blending materials from several depths between 10 and 68 feet
and typifying those “Upland unit” and Tobacco Road Formation materials proposed for use as
compacted backfill. The results of the Proctor tests and the grain-size distributions for the
combined materials are shown in Reference 35. In general, the optimum water content ranges
from 10 to 12% for modified compaction and is about 12% for standard Proctor. The
maximum dry densities range from approximately 118 pcf for the standard Proctor effort to a
maximum of 128 pcf for the modified Proctor. With the exception of one test, all of the
moisture-density relationships fall between dry densities of 118 and 128 pcf. The single
instance of a much different relationship (BH 24, blend 6) was for a clean, medium-fine sand.
One standard Proctor test was conducted and resulted in a maximum dry density of 118 pcf
(Ref. 35).

A total of eight consolidation tests were performed on six material blends and two combined
samples compacted from 93 to 100% of maximum dry density. Individual void ratio versus
log pressure curves for these tests are presented in Reference 35. From a comparison of initial
and final water contents, it appears that the samples were wetted as initial loads were applied.

Since backfill used in S-Area is similar to backfill previously placed in H-Area, the S-Area
test results on compacted fill were compared with the previous results from H-Area.
Atterberg limits and mechanical analyses were performed on over 20 samples of clayey fine
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to medium sand fill in H-Area. The properties of a typical sample from a former spoil pile
were 38% passing the No. 200 sieve, liquid limit of 56, and plasticity index of 34. Index
properties are plotted in Reference 20 for comparison with S-Area materials. A modified
Proctor compaction test on the H-Area spoil pile samples resulted in a maximum dry density
of 121 pcf and optimum water content of 13% (Ref. 35). The shape of the compaction curve
is similar to S-Area test results at similar fines content.

A total of 23 consolidation tests were performed on H-Area samples of fill material
compacted in the laboratory to densities ranging from approximately 90 to 120 pcf.
Generalized consolidation curves developed from these 23 tests are presented in Reference 35
together with S-Area tests. Results of H-Area samples tested at their natural water content are
shown as solid lines; the effects of wetting are shown as dashed lines. Curves are presented
for dry densities of 110, 115, and 120 pcf, representing 91, 95, and 99% of maximum dry
density, respectively. The vertical distance between H-Area curves from tests at natural water
content and the wetted condition for equivalent densities represents the volume change that
occurs as the sample is allowed to saturate at a constant load. On the basis of the generalized
consolidation curves, 95% of maximum dry density is required to prevent significant strain
due to eventual saturation for the clayey sand fill.

The index test and compaction results for the clayey sand samples from H-Area and S-Area
are similar. The maximum dry density, optimum moisture content, and shape of the
compaction curve of the H-Area sample corresponds to the results of compaction tests on the
S-Area blends with more than 16% fines. These similarities indicate that the data from H-
Area can be applied directly to evaluate the characteristics of the potential clayey sand fill at
S-Area.

Comparing consolidation curves of S-Area blends and generalized consolidation H-Area
curves, it is evident that the S-Area data do not have the change in slope at increasing pressure
shown by the H-Area data. The difference in curvature may occur because of the difference
in the time of wetting test samples.

Generalized H-Area curves show that for a constant fines content of 38% the denser samples
are less compressible. The S-Area blends represent a range of materials with respect to both
fines content and density. The loading and subsequent saturation sequence used in the H-
Area consolidation tests more closely follows field conditions than the immediate saturation
procedure used in the S-Area tests. Also, the typical backfill in S-Area consists of clayey
sands similar to the H-Area samples. Therefore, H-Area curve 2 (Ref. 35), which represents
consolidation of a sample compacted to 95% of maximum dry density, is recommended for
use in estimating settlements of shallow footings on compacted clayey fill.

Resonant Column Tests

Shear wave velocities derived from cross-hole measurements reflect the elastic response of

material to small shear strains (~ 10'4%). However, these strains are substantially smaller than
strain levels experienced during an earthquake. Moreover, materials behave in a nonlinear
manner under seismic loading. The shear modulus (G) decreases with increasing strain
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amplitude (1) from the maximum shear modulus at small strain (Gmax). Gmax 1s measured at

the relatively small strain levels associated with a cross-hole investigation. Also, as shear
strain increases, the material damping (D) increases, reflecting the nonlinear hysteretic nature
of unconsolidated materials responding to cyclic loading.

To obtain the strain-dependent characteristics of G and D, the resonant column test was
performed in general accordance with a procedure developed (Ref. 38). Twenty-one resonant
column tests were conducted on undisturbed, trimmed samples of sand having various
densities and percentages of fine-grained constituents. In addition, three resonant column
tests were conducted using sand samples compacted to near maximum dry density at optimum
moisture content using a modified Proctor compaction effort. The samples tested, which were
recovered between depths of 31.5 and 94.0 feet, are listed in Table 3.4-12. The test results in
terms of shear modulus reduction (G/Gmax) and damping versus shear strain are shown in
Reference 35. Generally, three effective confining pressures (1, 2, and 4 kg/cm2 or2,4,and 5

kg/cmz) were used in testing each specimen. The compacted samples tested are also listed in
Table 3.4-12, and the results are presented in Reference 35. Three effective confining

pressures (0.70, 1.41, and 2.81 kg/crnz) were used for BH 55, ST-1, and BH 90, ST-2.

The plots of (G/Gmax) for undisturbed sands with some or no clay indicate that these
materials tend to soften somewhat less for higher confining pressures (c¢); however, this
trend is not strong. Generally, in the range of 6¢ between 1 and 5 kg/cmz, G lies between 75
and 90% of Gmax at peak to peak shear strain (y) equal to 107%. The material damping (D)
is nearly independent of confining pressure and generally is less than 2% of the critical value

over the approximate shear strain range of 5 x 107 to 5 x 107°%. For v equal to 10'2%, Dis
generally less than 3%.

The clayey sand recovered from boring BH 38 at depths near 73.5 and 94 feet exhibits
somewhat less shear modulus reduction and greater damping as a function of shear strain and

confining pressures than do the cleaner sands. Aty equal to 10'2%, for example, G/Gmax
ranges from approximately 90 to 95% depending on the confining pressure. Also, at y equal
to 10'2%, D ranges between 4 and 5%.

The plots of G/Gmax for compacted sands show a more pronounced softening trend with
increasing o¢ than was observed for the undisturbed sands. Generally, in the range of ¢
between 1 and 5 kg/cmz, G lies between 80 and 95% of at y equal to 107%. Using a curve
fitting procedure similar to that suggested (Ref. 39), values of G corresponding to strains at y
equal to 107% were found to range from 45 to 75% of Gmax . The compacted material
exhibited an overall stiffer response than did the in situ material, as a substantially higher load
was required to achieve comparable levels of y. The material damping (D) is generally
constant, at approximately 5%, for y less than 10*% and for all confining pressures used
during testing. For y levels above 10'3%, D increases and the influence of 6¢ becomes more
pronounced.
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Cyclic Triaxial Tests on Sand

Liquefaction of saturated sand has been defined as the phenomenon by which the sand
undergoes such a substantial reduction in shear strength due to a dynamic load. One of the
widely accepted laboratory tests to investigate liquefaction is the constant volume cyclic
triaxial test whereby a cyclic deviator stress (sq) of equal magnitude in compression and
tension is applied to a saturated sand specimen(undrained) under initial mean effective
confining pressure (Gp). The constant frequency-constant amplitude cyclic deviator stress is
intended to simulate the stress conditions induced in the field.

A total of 19 cyclic triaxial tests were conducted on sand specimens trimmed from
undisturbed samples. The samples were recovered from depths between 32 and 57 feet in
borings BH 38, BH 47, BH 55, and BH 81. All samples tested were fine to medium sands,
most of which possessed between 14 and 19% of material passing the No. 200 sieve. Four
samples were classified as clean sands; these had 5 to 6% of fines and uniformity coefficients
(Cu) ranging from 2.6 to 3.9. Total unit weights ranged from approximately 121 to 130 pcf,
and water contents were between approximately 14 and 26%.

The borehole locations of undisturbed triaxial shear testing were selected and drilled when
earlier DWPF configurations were under consideration. No new undisturbed sampling for
triaxial shear testing was done after final site configuration. Thus no triaxial samples were
obtained directly under the present location of Building 221-S. However, borehole 81 is in
the immediate vicinity, and other undisturbed sampling (i.e., shelby tube) and boreholes (i.e.,
SPT and CPT) are located under the structure.

The cyclic triaxial test data are presented in Reference 35. For each sample, plots are
presented for pore pressure (u) versus axial strain (e), stress ratio (sd/2sp) versus, and u versus
time. These data are used to determine the relationship between the shear stress ratio and the
number of cycles required to cause liquefaction (cyclic deformations equal to 5% peak to peak
strain) for a given sample. These data are summarized in Subsection 3.4.3.4.8.

Cyclic Torsional Tests on Sand

Cyclic torsional tests were performed on hollow, thick-walled cylindrical samples subjected to
a prescribed cyclic torsional shear stress.

The sample is a hollow cylinder having inside and outside diameters of 1.4 inches and 2.8
inches, respectively. The sample height varies linearly from 1.0 inches to 2.0 inches from
inside to outside. This shape permits uniform shear strains to develop in the sample when it is
subjected to a torsional rotation. The sample can be saturated under either an isotropic
confining condition (i.e., horizontal confining stress [ch] equal to vertical stress [cy]) or an

anisotropic condition (i.e., ch not equal to oy). During the test, the shear stress is applied

independently from the normal stresses. In contrast to the cyclic triaxial stress conditions, the
octahedral normal stress remains constant in the torsional simple shear test.
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A total of five trimmed samples were tested. The results are shown in Reference 35. The
results are summarized with the cyclic triaxial test results in Subsection 3.4.3.4.8.

In addition to the cyclic torsional testing of undisturbed material, a cyclic torsional test was
also conducted to obtain data relative to the behavior of the compacted backfill materials. The
test was performed using a representative laboratory compacted sample from boring BH 24 at
depths between 40 and 50 feet (blend 4). The test was conducted at a mean effective normal

stress equal to 1 kg/cmz. The results of the cyclic torsional test at two shear strain levels are
shown in Table 3.4-12, and they demonstrate the reduction of shear modulus with increasing
strain. Also included in Table 3.4-12 are data obtained from a static triaxial compression test
for a comparably prepared sample. The data from both tests are presented to demonstrate the
amount and trend of shear modulus reduction that occurs at large shear strain levels (greater

than 107°%).
34345 EXCAVATION AND BACKFILL

Excavations up to 30 feet deep were required for establishing foundations of the Category I
structures. Some non-Category I structures, such as the pump pits, required foundations at
greater depths. Construction excavation slopes of one vertical to one horizontal (1:1) were
used and maintained during construction. In the area where the fan house foundation was
constructed with compacted fill adjacent to the deeper Sand Filter Building, the excavation
slope was limited to approximately one vertical to x 1.5 horizontal to minimize the possibility
of disturbance to the natural material. All foundations are constructed above the existing
groundwater level, except for the DWPF low point pump pit and the Z-Area drain tank.

Up to 20 feet of compacted fill was placed during rough grading operations. The fill was
obtained from onsite stockpiles or offsite sources of clayey sand similar to the materials in the
upper 25 feet of S-Area. To minimize post-construction settlement, the compaction
specification requirement as discussed in Subsection 3.4.3.4.7 for all fill placed, either during
the rough grading or as structural backfill, was 95% of modified Proctor maximum dry
density.

Natural site materials from ground surface level to a depth of 25 feet consisted primarily of
fine to medium clayey sand and sand and some clay with typically greater than 20% fines.
The water content of this fill material typically varied from 15 to 20%. Occasional sandy clay
layers, 2 feet or thicker, were encountered in several borings.

Modified Proctor compaction tests (ASTM D1557, Method A) performed on S-Area clayey
sands (Ref. 35) resulted in maximum densities ranging from 121 to 127 pcf, with associated
optimum water contents ranging from 10 to 13%. The compaction curves are typically
steeply sloping, indicating the density is highly sensitive to the moisture content. The highest
water contents at which 95% of the maximum dry density (the required density) could be
achieved ranged from 13 to 16%, up to 4% below natural water content of onsite materials.
The water content of natural materials was adjusted during the construction fill operations to
maintain it within +3% of optimum to achieve the specified level of compaction. Where new
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foundations for Category I structures are supported on backfill placed in local excavations, the
backfill was restricted to a select material that could be readily compacted with smaller
equipment.

The gradation requirement for clean granular select fill material was as follows:

Sieve Size Percentage Passing
by Weight

4 in. 100

No. 4 70 to 100

No. 40 0to 70

No. 200 0to 12*

* Based on percentage passing the No. sieve.

The fan house (292-S) is the only Category I structure supported on compacted fill which was
placed after rough grading was completed. An open-cut excavation made for the adjacent
Sand Filter Building (294-S) extended approximately 22 feet below rough grade. A one
vertical to 1.5 horizontal (1:1.5) construction slope for the south side of the Sand Filter
Building was made approximately 28 feet south of the fan house north wall. Therefore, the
north wall was founded on select backfill compacted to 95% of modified Proctor maximum
dry density.

3.43.4.6 GROUNDWATER CONDITIONS

Water-table elevations in the Barnwell Group in this region of SRS exhibit gradual
fluctuations, as indicated by the piezometric levels shown in Figures 3.4-35 through 3.4-38.
These levels are consistently at or below an elevation of 255 feet msl. Over a period of nearly
4 years, the Barnwell and the Santee piezometers exhibited gradual fluctuations of
approximately 5 to 8 feet, with the peaks and troughs corresponding to periods of above- and
below-average rainfall. The fluctuations in the Congaree and Ellenton Formations were
smaller in magnitude, but had the same relations with respect to wet and dry periods. The
highest extrapolated groundwater levels were at elevation 265 feet msl, which is
approximately 15 feet below yard level of DWPF Category I buildings (Ref. 42).

Aquifer performance tests were conducted prior to construction using wells screened in the
water-bearing sands of the Barnwell Group and the Santee Formation. These tests provided
basic aquifer data required for design of dewatering systems. For the Barnwell Group, the
transmissivity (T) was 3,140 gpd/feet; for the Santee Formation, the transmissivity was 660
gpd/feet. The permeability of the “tan clay” was approximately 8E-07 cm/sec for an assumed
thickness of 10 feet.
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Over the plant life, fluctuations in groundwater levels can be expected to occur as they have in
the past. Runoff of rainwater will likely increase; therefore, a modest decline in groundwater
levels could occur. Plant usage of groundwater will be approximately 170 gpm. This water
will be withdrawn from Cretaceous sands and will have no significant effect on the aquifer
(Subsections 3.4.2.2 and 3.4.3.5). In summary, construction of the DWPF plant will have no
significant long-term effect on subsurface aquifers and their associated piezometric contours,
gradients, or flow rates.

3.4.3.47 STATIC FOUNDATION BEHAVIOR

3434.7.1 Bearing Capacity of Spread Footings

The ultimate bearing capacity of foundations was determined using the conventional Terzaghi
method of analysis and material parameters based on the results of field and laboratory test
data.

All facilities are supported on spread foundations are founded on either stratum S1 or
compacted fill. The maximum allowable bearing capacity for both compacted fill and S1
materials is 3 tons/square feet (tsf). This bearing capacity is applicable for spread footings
between 3 and 6 feet wide as well as for subgrades of roads and railroads. Footings less than
3 feet wide have reduced design bearing capacities equal to 1/3 x B x 3 tsf, where B is the
footing width. Factors of safety against bearing capacity failure are at least 3.0.

3434.7.2 Bearing Capacity of Mat Foundations

The mat foundations for the vitrification building, glass waste storage building #1, and sand
filter building are founded 13 to 23 feet below final grade on stratum S1 materials consisting
of medium compact to compact clayey sands. For these sandy materials, the ultimate bearing
capacity of a mat is a function of the embedment depth, mat, and mat rigidity. Increasing any
of these parameters increases the bearing capacity because a correspondingly larger material
mass resists failure. The relative mat rigidity is a function of the mat thickness and the
stiffness of the superstructure.

Allowable bearing capacities for foundations are summarized in Table 3.4-13. The bearing
capacity of Category I structures were evaluated for two cases: Case 1 assumes that the
structure acts as a completely rigid body, and Case 2 assumes an effective mat rigidity based
on the mat thickness and column and wall spacings shown on preliminary structural drawings.
In both cases, the allowable bearing capacities are based on a safety factor of 3.0 against
ultimate shear failure and do not consider settlements.

For case 1, allowable bearing values are quite high at 17 to 20 tsf. In case 2, the relatively
thin mat of the Sand Filter Building limits the allowable bearing capacity to 6 tsf. The
allowable bearing values for the other structures increase with mat thickness from 10 tsf for
the Glass Waste Storage Building #1 to 15 tsf for the Vitrification Building.
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343473 Material Parameters

Table 3.4-14 summarizes static design parameters used for undisturbed natural materials
between the ground surface and foundation subgrade level, as well as parameters for
compacted fill. For design purposes, the properties of natural soils and compacted fill are
similar, except for a slightly higher fill unit weight. Because the fill and natural material
parameters are similar, the design earth pressure coefficients, equivalent fluid pressures, and
coefficient of vertical subgrade reaction are similar for both materials.

343474 Settlement Analyses of Category I Structures

Static settlements for Category I structures were estimated using one-dimensional
consolidation of the soil profile under applied loads (Ref. 28) and soil removal for the
foundation excavation was considered as negative loading to determine the amount of post-
excavation heave. The change in stress state due to structural loads, which was based on
available preliminary drawings, was determined using a Boussinesq solution. A material
property profile (Figures 3.4-44 through 3.4-47) representing average conditions was
developed from geologic sections for each Category I structure. The average existing grade,
post-rough-grading, and foundation excavation grade were based on the available rough-
grading and structural plans. Average groundwater levels were assigned to each formation for
computation of in situ effective stresses. Based on the available piezometric data, the average
piezometric surfaces of the Barnwell Group, Santee Formation, and Congaree Formation are
at elevations 245, 240, and 170 feet msl, respectively.

Material properties were assigned to each stratum based on an evaluation of the available S-
Area laboratory test data and data from previous H-Area studies, since the subsurface
conditions in H-Area are similar to those in S-Area. Table 3.4-9 lists the parameters used in
the settlement analyses. Previous H-Area studies have established that clayey materials of the
“Upland unit,” the Barnwell Group, and the Santee Limestone are preconsolidated to stresses
greater than those imposed by the DWPF structure. Settlement measurements of existing H-
Area tank structures with foundation fill loads of the same order of magnitude (about 4,000
psf) as the DWPF foundation loads reasonably agree with the settlement estimates based on
recompression of the soil profile. Therefore, recompression indices from S-Area tests have
been used for analyses of all strata except stratum C2. Within Stratum C2, two of the six S-
Area consolidation tests exhibited preconsolidation stresses less than or approximately equal
to the existing effective overburden pressure. This indicated that virgin compression may
have occurred within some portion of the silty clay layer. A conservative analysis was
performed by assuming that one-half of the clay layer would experience virgin compression
and the remaining one-half would experience recompression under the net stresses imposed
by the structures.

The estimated total settlement for each Category I structure is the sum of the settlement and
heave. Figure 3.4-48 shows the estimated heave and total settlements at several points within
the glass waste storage building #1, sand filter, and fan house buildings. Figure 3.4-49 shows
the estimated heave and total settlements at several points within the Vitrification Building.
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The predicted post-construction settlement for the Vitrification Building ranged from 2.7
inches at the northwest corner to 4.7 inches at the center (Ref. 28). The anticipated maximum
differential settlement was 2.0 inches over 40 feet. The total and differential settlements
predicted for other Category I structures were somewhat less due to smaller stresses imposed
by lighter structures. A construction and post-construction settlement monitoring program
was conducted for the Vitrification Building at key foundation locations (Ref. 43). This
program began in November 1984, the date of mat placement, and was terminated in April
1991 after it was determined that post-construction settlement had ceased. However, the
program was re-activated in July, 1994. The cumulative total settlement through July, 1994
ranged from 2.6 to 2.9 inches in the northern section of the Vitrification Building, where the
heaviest loads were applied, to 1.5 to 2.2 inches in the southern section (Ref. 31).

A summary of the foundation detail for each of the major structures is given below

e Glass Waste Storage Building #1 (250-S), (Figure 3.4-48)

The Glass Waste Storage Building #1 is a mat-supported, reinforced-concrete box.
The top of the vault area base slab is approximately at elevation 264.5 feet msl. The
structure is bordered by the intake and exhaust stacks on the east and west sides, the
latter also with tops of base slabs at elevation 264.5 feet msl. Wheel lanes for the
shielded canister transporter (SCT) border the vault area on the north and south sides,
with tops of base slabs at elevation 285.5 feet msl. Office and maintenance areas, with
tops of base slabs at elevations 286.5 feet msl and 285 feet msl, respectively, are
constructed adjacent to the south SCT wheel lane and the exhaust stack. The average
stress release due to excavation in the vault and stack areas was about 1.5 tsf and the
gross area load of the structure was estimated at 0.9 tsf. Therefore, the structure
caused a net unloading of 0.6 tsf immediately below the base slab.

The maximum estimated excavation heave at the center of the vault area was 0.7
inches, 0.3 inches in the exhaust stack area, and less than 0.2 inches in the SCT wheel
lanes and maintenance and office areas. The estimated maximum total settlement of
0.6 inches was at the center of the exhaust stack and 0.3 inches at the center of the
structure. At the sides, estimated foundation total settlements were 0.2 to 0.4 inches
with the slightly greater settlement occurring beneath the raised canister transporter
runway. The temporary loading caused by the loaded transporter were not to affect
these estimates.

e Sand Filter Building (294-S), (Figure 3.4-48)

The Sand Filter Building is a reinforced-concrete, mat-supported box. The top of base
slab slopes downward to the north from elevation 259 feet msl to 257 feet msl.
Adjacent rough grades averaged elevation 272 feet msl. The average excavation stress
release was estimated at 1.1 tsf, while the average structural area dead load was
estimated at 0.8 tsf. The structure caused a net unloading of 0.3 tsf at subgrade.

The estimated maximum excavation heave of 0.7 inches was to occur at the center of
the Sand Filter Building and the estimated heave at the sides and corner were 0.3 and
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0.2 inches, respectively. Total estimated foundation settlements ranged from 0.4
inches at the center to 0.3 inches at the north inlet and south outlet tunnels to 0.2
inches beneath the corners. The maximum differential settlement was estimated at 0.2
inches over 100 feet.

e Fan House (292-S), (Figure 3.4-48)

The fan house is a reinforced-concrete structure with the top of the base slab at
elevation 276.5 feet msl. The average surrounding rough grades were at elevation 276
feet msl. All structural dead loads, with the exception of the isolated diesel generator
pads, were supported on strip footings bearing at 3 tsf. The excavation stress release
at subgrade averaged 0.1 tsf and the average building load was estimated at 1.2 tsf.

The excavation heave was estimated as negligible due to the minor excavation stress
release. The maximum estimated foundation settlement was 1.1 inches at the center of
the interior strip footing. Estimated settlements at the sides varied from 0.7 to 0.9
inches and 0.6 inches at the center of the generator pads.

e Vitrification Building (221-S) (Figure 3.4-49)

The Vitrification Building is supported by a 10-foot thick reinforced mat with the base
slab top generally at elevation 280 feet msl and at elevation 270 feet msl in a
depressed section near the north end of the structure (Figure 3.4-49). The existing
ground surface averages elevation 276 feet msl. The average stress release due to
excavation was 0.4 tsf at subgrade. Some of this release was due to rough grading,
which removed up to 2 feet of material within the building limits. Placement of
structural backfill to elevation 284 feet msl around the building was assumed to
increase the surface loading adjacent to the structure from 0.85 tsf to 1.05 tsf.

The estimated excavation heave varied from 0.7 inches at the center of the depressed
section and 0.5 inches at the center of the structure to 0.2 inches at the northwest
corner. Estimated foundation settlements ranged from a maximum of 4.4 inches at the
center of the northern third of the building to a minimum of 2.0 inches at the
southwest corner. The actual measured (1994) total settlements ranges from 1.5 to 2.9
inches. The maximum measured (1994) differential settlement along the long and
short sides of the vitrification building are 1.1 and 0.5 inches, respectively. With the
exception of the depressed section, differential settlements between the middle and
sides range from 0.8 to 1.1 inches. The differential settlement between the center of
the depressed area and the north side is 0.9 inches. The analysis assumed flexible
foundations, but the stiffness of the mat foundation was to reduce the differential
settlements. Actual measured and estimated settlements for this structure are shown in
Figure 3.4-50 (see Ref. 31).

3.4.3.4.8 RESPONSE OF SOIL AND ROCK TO DYNAMIC LOADING

The seismicity of the site region is discussed in Subsection 3.4.3.2. Historical earthquake data
are presented, as well as the criteria for establishing the design basis earthquake (DBE).
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Subsurface field data and the results of laboratory testing are presented in

Subsection 3.4.3.4.3. Dynamic material test data include results from cyclic triaxial, cyclic
torsional, and resonant column tests. Subsection 3.4.3.5 includes descriptions and results of
the seismic reflection survey and the cross-hole and down-hole seismic surveys.

These data have been used in the analysis of liquefaction and cyclic mobility potential below.
To predict the response of foundations to dynamic loading related to either earthquakes, wind,
or mechanical equipment, it is necessary to define the stiffness and damping parameters for
the subgrade. Because these parameters vary with strain, it is also necessary to describe their
strain dependence.

The results of cross-hole seismic surveys and resonant column tests on in situ materials have
been used to establish a subgrade profile for the site that defines “low strain” shear moduli
and the strain-dependent relationship for both moduli and damping ratios. In addition, results
of resonant column tests on compacted samples were used to define dynamic parameters for
these subsurface materials.

Figure 3.4-41 presents a simplified subgrade profile to a depth of about 300 feet and includes
values of shear modulus for small strain (Gmax) for each layer and representative values of

total unit weight and Poisson's ratio. This profile was developed for use in the dynamic
analysis of the seismic response of the subsurface materials and the structures.

The values of (Gmax) are applicable to the free field condition (i.e., no influence from
structural loads). Values of (Gmax) at selected locations beneath the four Category I

structures are summarized in Table 3.4-15. Between the foundations of these structures and
elevation 260 feet msl, the distribution of the building weight in a horizontal plane results in a
significant variation in (Gmax) in the horizontal plane. An estimate of (Gmax) for any point

beneath the structure and above elevation 260 feet msl was made from the graph in
Figure 3.4-51. The material profile shown in Figure 3.4-41 was used to evaluate the dynamic
responses of the DWPF structures. The values of (Gmax) for the in situ materials were

modified to account for the confining stress imposed by the structure of interest.

Figure 3.4-51 shows the reduction in shear modulus (G/Gmax) and the increase in damping
(D) with increasing shear strain (g) for both in situ and compacted backfill materials. These
curves were developed from resonant column tests for strains less than approximately 3 x 10
% and from cyclic torsional and static triaxial tests for larger strains. The laboratory data
indicated that the relationship between G/Gmax versus correlations of the in situ materials and
the backfill materials was quite small. Hence, a single set of curves is used for both types.
However, the difference in D versus for the two types was significant, and two curves are
provided.
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3.4.3.4.8.1 Liquefaction and Cyclic Mobility Potentials

Introduction

The DWPF site is underlain by thick sequences of variable silty and clayey sands interbedded
with sandy and silty clays. The behavior of saturated sands subjected to the cyclic loading
caused by earthquakes is an important issue in the siting and design of important facilities
founded on such materials. For analyzing the potential effects of earthquake shaking, it is
important to distinguish between two different phenomena; a liquefaction (flow failure) and
cyclic mobility (Ref. 40, 44, 48).

Liquefaction

Liquefaction is a phenomenon wherein a mass of material loses most of its shear strength
when subjected to undrained dynamic loading. In such a state, the soil flows like liquid until
the shear stresses acting on the mass equal the reduced shear strength.

Liquefaction generally occurs in saturated sands but can also occur in very large masses of
sand or silts that are dry and loose enough so that the air cannot escape from the voids fast
enough to prevent undrained shear.

Liquefaction, as defined above, involves large unidirectional shear deformations; thus, one
would expect the material to tend toward steady state of deformation during liquefaction
failures. If the shear strength at the steady state is lower than the applied shear stress in the
ground, then in principle, it is possible for liquefaction to occur. Conversely, if the steady-
state shear strength is greater than the shear stress in the ground, then liquefaction cannot
occur because the associated large, unidirectional deformations are not possible.

Cyclic Mobility

Cyclic mobility refers to the tendency of sand, even in a medium dense state, to exhibit
significant shear strains when subjected to a strong vibratory disturbance. These cyclic shear
strains are accompanied by changes in effective stress and/or void ratio, depending on the
degree of saturation and drainage conditions.

During cyclic mobility of the soil, the softening is accompanied by high pore pressures,
increasing cyclic deformation, and sometimes permanent deformations, but it does not lead to
catastrophic loss in shear strength as with the case of liquefaction.

Thus, cyclic mobility represents a less severe phenomenon from liquefaction. This distinction
is especially important with dense and very dense sand because liquefaction cannot occur for
such materials, although, to a limited extent, cyclic mobility can occur.

Thus, for design purposes, the ability of a saturated sand to resist cyclic loading should be
described by its potential to develop either liquefaction or cyclic mobility. An analysis of
liquefaction and cyclic mobility was performed by (1) comparing the properties of the sand at
DWPF site with actual sites that have exhibited some degree of liquefaction under seismic
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excitation (Empirical Method) and (2) estimating the potential for liquefaction or cyclic
mobility on the basis of computed static and earthquake stresses and results of undrained
static and cyclic tests conducted in the laboratory (Analytical Method). Each is discussed in
the following subsections.

3.4.3.4.8.2 Methods to Evaluate Liquefaction and Cyclic Mobility Potentials

Introduction

The methods used to evaluate the potential for liquefaction (flow failure)and cyclic mobility
can be divided into two groups: empirical methods and analytical methods. Both methods of
analysis have been applied to the materials at the DWPF site.

The use of several methods of analysis is necessary because no single method is considered
completely reliable. Each method has certain inherent limitations as well as advantages and
disadvantages when applied to a specific site. The conclusions from each approach must be
examined with the results of the other methods to provide a more complete assessment of the
potential for liquefaction or cyclic mobility.

The empirical methods relate the field performance of sand deposits in areas of known
earthquakes to an in situ characteristic of the deposit. Field measurements of this in situ
characteristic are then made at the new site to provide a basis for comparison with the
observed performance at other sites. The data base associated with field observations of
ground failures does not distinguish between occurrence of liquefaction versus cyclic
mobility. Hence, the term ground failure will be used instead of liquefaction or cyclic
mobility for analyses based on empirical methods.

Analytical methods to evaluate the potential for liquefaction or cyclic mobility are based on
laboratory measurement of the static or dynamic properties of site-specific material samples.
These properties are compared to the computed static stresses (liquefaction) of cyclic stresses
or strains (cyclic mobility) imposed during the seismic event.

Empirical Method

Methods for evaluating the potential for seismically induced ground failure based on field
data traditionally have centered on correlations between Standard Penetration Tests (SPT) and
occurrences of ground failure.

The advantage of using these empirical methods to evaluate the potential for seismically
induced ground failure is that the correlations are based on actual sites where an earthquake
has occurred and the response of the subsurface materials has been observed. The primary
limitation of these methods is that the correlations are based on SPTs and CPTs, which are
relatively crude field index tests. Such tests cannot reflect correctly all the factors that
influence the occurrence of seismically induced ground failure. Thus, there is a large area of
uncertainty where both ground failure and no ground failure have been observed for sands
with the same blowcounts (SPT) when subjected to similar earthquakes. An additional
uncertainty in the empirical methods is that the data base associated with both the SPT and the
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CPT correlations is based on observations of ground failure occurring in materials shallower
than about 50 feet. At the DWPF site, consideration of ground failure is required to depths on
the order of 80 feet.

The development of empirical correlations has been described previously by others (Ref. 57,
45). Recently, the database associated with SPT resistance was expanded (Ref. 47) and
includes data provided by researchers in many countries, particularly those in the US., China,
and Japan. Of particular interest are the data gathered following the Miyagiken-Oki
earthquake in Japan in June 1978 (magnitude 7.4) (Ref. 48). In evaluating this data,
Tokimatsu and Yoshimi grouped materials by D50 (the grain size at which 50% of the
particles by weight are finer) into relatively clean sands (D50 >0.25 mm) and silty sands (D50
<0.10 mm). Based on this distinction, they demonstrated that silty sands were more resistant
to ground failure than clean sands for the same blowcount. This distinction in defining clean
versus silty sands is particularly relevant to the DWPF site, which is predominantly underlain
by slightly silty or clayey sands to silty or clayey sands.

Seed and Idriss (Ref. 47), using a D50 of 0.15 mm rather than 0.10 mm to define the limit for
silty sands and developed correlations for boundaries between seismically induced failures
and nonfailures associated with each soil type. Subsequently, Tokimatsu and Yoshimi

(Ref. 49) reanalyzed the same data on the basis of percentage of fines in the sand rather than
D50. The soils were grouped into clean sands (<7% fines) and silty sands (10% fines). The
importance of the fines content on ground failure potential was also investigated by Zhou
(Ref. 50), who also concluded that ground failure potential was greatly influenced by the fines
content. He developed correlations based on cone penetration resistance and fines content
from field observations of seismically induced ground failures and nonfailures in China.

Applications of the above empirical methods based on SPTs and CPTs are presented later in
this subsection.

Analytical Methods

The advantage of using analytical methods for liquefaction and cyclic mobility analyses is
that the influence of specific factors on resistance to ground failure can be investigated using
materials from the site. In particular, these two liquefaction phenomena can be evaluated
independently. The primary limitations of analytical methods are the difficulty in obtaining
representative undisturbed samples from the site and modeling earthquake conditions in the
laboratory. Specific uncertainties involved in analytical methods are discussed in the
following subsections.

Liquefaction

Liquefaction of loose (contractive) sands can occur when the driving shear stresses (building
loads) are greater than the undrained steady-state shear strength of the sand deposit. The
steady-state shear strength is the shear strength at large strains and corresponds to the
condition of continuous deformation, with the shear stress needed to cause deformation at a
given normal effective stresses remaining constant (Ref. 51).
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For contractive sands, shear stresses can be applied under drained conditions (e.g., loads due
to building construction) that are less than the peak, undrained shear strength of the sand but
are greater than the undrained steady-state shear strength without any harmful consequences.
However, under rapid loading, such as an earthquake, the material mass behaves in an
undrained manner. As the resultant shear deformations occur, the available shear strength of
the deposit tends to the undrained steady-state shear strength. If the driving shear stresses are
greater than the undrained steady-state shear strength, liquefaction can occur. For level
ground conditions liquefaction may result in a bearing capacity failure.

A dilative sand (a sand that is dense enough to increase in volume during drained shear or
generate negative pore pressure during undrained shear) has an undrained steady-state shear
strength that is greater than its drained shear strength. Hence, a dilative sand deposit that can
support a building under static conditions may experience minor deformations during
earthquake shaking, but when the earthquake motions cease, the deformations stop because
the available undrained shear strength exceeds the applied shear stresses. Therefore, dense
(dilative) sands are not subject to liquefaction like loose (contractive) sands.

The analysis for potential liquefaction involves two steps. First, the steady-state shear
strength of the sand must be determined. If the sand is dilative, it will not experience a
liquefaction. If the sand is contractive, liquefaction is possible if the driving stresses (building
loads) are greater than the undrained steady-state shear strength of the deposit. The main
uncertainty in this is the determination of the in situ steady-state shear strength of the as a
function of in situ void ratio.

The analysis of liquefaction potential is presented later in this subsection.
Cyclic Mobility

The analytical method most commonly used to determine cyclic mobility is presented in
Reference 33. This approach (stress method) compares the cyclic stresses required to cause
cyclic mobility in laboratory undisturbed specimens to the estimated cyclic mobility in
laboratory undisturbed specimens to the estimated cyclic stresses resulting from a dynamic
load. The main uncertainty in this method relates to the differences between the in situ
material and earthquake stresses and the laboratory test specimen and test procedures.

These differences include the following:

1. Sample disturbance

D

Boundary effects in the tests that lead to development of gross nonuniformities in
the specimen

State of stress
Test system compliance

Multi-directional shaking

AN

Number of equivalent stress cycles
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The impact of each of these factors must be evaluated in order to interpret the laboratory data
appropriately. However, given the present state-of-the-art, definitive assessment of these
factors is not possible, and considerable judgment is required.

A second analytical method compares cyclic strains rather than stresses (Ref. 52). This
approach (strain method) is based on the premise that for undrained cyclic loading of sand
there is a predictable correlation between cyclic shear strain after a given number of cycles
and excess pore water pressure and that there is a threshold shear strain below which no
significant pore water pressure buildup can occur.

This method determines the predicted cyclic shear strain during an earthquake as a function of
ground acceleration and material shear modulus (at the predicted cyclic strain level). This
predicted shear strain level then is compared to a threshold shear strain below which no
excess pore water pressure is generated; hence, no cyclic mobility can occur.

The above two analytical approaches are applied to the DWPF site later in this subsection.

34.3.4.83 Design Material Profile

Introduction

The design dynamic material profile based on the results of the subsurface exploration
program and on laboratory tests, making use of all pertinent data, is shown on Figure 3.4-41.
The groundwater elevation was established from piezometers installed during the site field
exploration program. The field tests included classification and geophysical testing.
Laboratory tests included classification and density determinations, resonant column tests,
consolidated-undrained triaxial tests, cyclic triaxial tests, cyclic torsional tests, and membrane
penetration tests. An accurate estimate of shear wave velocity as a function of depth was
obtained from cross-hole geophysical measurements.

Disturbed samples (using a standard split-spoon barrel sampler) were recovered at several
locations in the zones of interest. For these samples, SPT blowcount per foot of penetration
was determined. Cone penetration testing was performed at locations adjacent to SPT
borings.

Undisturbed samples were recovered using thin-walled tube samplers. These samples were
used in the laboratory to measure the in situ density and to test the dynamic characteristics of
the material strata. More specifically, resonant column tests were conducted on undisturbed,
fine-grained materials and on either undisturbed or compacted, coarse-grained materials to
obtain the relationships of shear modulus and damping to shear strain. In addition, cyclic
triaxial and cyclic torsional tests were conducted to measure the pore pressure and strain
responses of cohesionless materials due to dynamic loading. Static triaxial tests were used to
determine whether the materials are contractive and hence subject to liquefaction.
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Seismic Material Response Analysis

The seismic material response was determined using the SHAKE computer code (Ref. 53).
This program establishes the earthquake-induced total shear stress and shear strains for use in
both the empirical and analytical liquefaction and cyclic mobility analyses.

Values of the maximum shear modulus between the ground surface and a depth of 300 feet
were determined from the cross-hole shear wave velocity measurements presented in
Subsection 3.4.3.5. Below a depth of 300 feet and extending down to the bedrock level at a
depth of about 1,050 feet, the value of the maximum shear modulus were determined using
the relationship given in Ref. 54.

The groundwater level was assumed to be an elevation 245 feet msl, which corresponds to a
depth of about 25 to 30 feet below ground surface (bgs). Actual groundwater levels ranged
from 30 to 50 feet bgs during the monitoring period.

The idealized material profile used for the seismic material response analysis and the
computed free-field material moduli are presented in Figure 3.4-41. The relationship between
the shear modulus and damping ratio to shear strain is presented in Figure 3.4-51.

3.4.3.4.8.4 Selection of Strata Requiring Liquefaction and Cyclic Mobility Analyses

A screening process was used to determine what portion of the material profile was the most
critical with respect to liquefaction and cyclic mobility potential. This process involved a
statistical evaluation of SPT values along with the material index property data.

As part of the site characterization in a previous report the boring log data were combined into
11 groups as shown in Figure 3.4-52 (Ref. 55). The figure shows the location of borings and
certain field tests in relation to other DWPF structures. Several boring groups are associated
with individual structures (e.g., Group 4 includes borings near the Vitrification Building),
while others incorporate boring data gathered during all field sampling programs.

Figure 3.4-53 shows that the trends in SPT resistance are remarkably similar for all boring
groups. In group 4, for example, mean penetration resistance decreases from a value greater
than 20 in the desiccated surficial materials of the “Upland unit” and the Tobacco Road
Formation to less than 15 near elevation 240 feet msl. Resistance then increases to
approximately 25 near elevation 215 feet msl then decreases to approximately 20 near
elevation 200 feet msl. SPT N-values generally increase in the underlying Santee materials.
Similar trends in mean SPT resistance may be observed among the boring groups. Because
group 11, which includes the 87 borings used in the analysis, exhibits a pattern very similar to
many individual groups (each comprising from 3 to 11 borings), the site appears reasonably
homogeneous (based on SPT resistance) at any prescribed elevation.

The statistical analysis of the SPT data along with the material index properties serves to
identify zones where liquefaction and cyclic mobility potential should be evaluated. Above
elevation 250 feet msl the materials have mean SPT values generally in excess of 15 to 20 and
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are predominantly clays or clayey sands. This zone is also characterized by relatively high
mean shear wave velocities (in excess of 1,150 feet/sec) and high mean cone penetration
resistance (in excess of 100 kg/cmz). Hence, liquefaction or cyclic mobility need not be
evaluated further in this zone.

From elevations 250 feet msl to 200 feet msl, the SPT data show that mean values are similar
to or less than values above elevation 250, and the materials contain significantly less fines.
Hence, this zone appears to be the most critical zone with respect to liquefaction and cyclic
mobility potential.

At about elevation 200 feet msl, a tan clay “marker layer” exists in many borings is
characteristic of the lower Dry Branch Formation. The Dry Branch Formation is generally
characterized by mean SPT values ranging from 25 to 35. The materials range from slightly
silty to clayey sands to clays. Some low SPT values were found below the tan clay which are
generally associated with liquefaction zones in the Santee Formation. With respect to
liquefaction or cyclic mobility potential, this stratum was considered less susceptible than the
zone between elevation 200 feet msl and 250 feet msl for the following reasons:

e The corrected SPT values for this deposit are greater than for the stratum between
elevations 200 feet msl and 250 feet msl.

o The earthquake shear stress ratio computed from the ground response analysis is
smaller than the stress ratio in the critical zone between elevations 200 feet msl and
250 feet msl.

o The Santee Formation tends to have slightly higher fines content than the critical zone
between elevations 200 feet msl and 250 feet msl.

Hence, it was concluded that the sediments most critical with respect to liquefaction and
cyclic mobility are found in the zone between elevations 200 feet and 250 feet msl.
Therefore, the remainder of the analyses presented herein relate to this material stratum.

The materials in this elevation zone consist of strata S1, S2a, and S2b described in the
geologic sections. These strata are generally described as clayey, fine to coarse sand (S1),
fine to medium sand with traces of silt (S2a), and fine to medium sand with traces of clay
(S2b). The sand grains are generally subangular. The results of extensive grain-size and
hydrometer analyses are shown in Figures 3.4-54 through 3.4-56. These data indicate that for
materials with more than about 10% fines, most of the fines tend to be in the clay-size range
rather than in the silt-size range. Sands that contain more than 20% fines have an average
liquid limit of 34 and a plasticity index of 12.

Stratification of the materials tended to be in the range of 5 feet or more, although occasional
clayey or silty lenses were observed on the order of less than an inch.
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343485 Earthquake Shear Stresses

Method of Analysis

For a postulated time history, the free-field, earthquake-induced shear stresses for the profile
were estimated by using the SHAKE computer program (Ref. 58).

The analysis of earthquake shear stresses was performed based on three recorded
accelerograms considered applicable to the DWPF site (Ref. 55, 43, 44). These three
accelerograms listed in Table 3.4-16 were chosen because (1) they were all recorded over
deep alluvial deposits, (2) they are related to earthquakes of moderate magnitude (6.6 to 7.1),
and (3) horizontal ground-surface accelerations were reasonably large (0.202 g <amax <0.348

g

All three accelerograms were scaled to a peak horizontal ground-surface acceleration of 0.20
g, the same as the DBE. The accelerograms along with their corresponding response spectra
for 5% damping are shown in Figure 3.4-57.

The duration of significant seismic motion for the site was determined to be approximately 16
sec. This duration envelops the requirements (strong motion of 16 sec) for deep cohesionless
material sites (significant motion of 16 sec). To maintain additional conservatism, full 30-sec
duration events were used (Ref. 30, 58, 59).

Shear stress time histories calculated for the postulated three earthquake events using the
SHAKE program are shown as functions of depth in Figures 3.4-58 through 3.4-60. Although
the peak shear stress varies greatly with depth, the peaks occur in all layers at about the same
time. Peak shear stresses at various depths are also summarized for the three postulated
accelerograms in Figure 3.4-61.

The above results were based on a profile of maximum shear wave velocity versus depth that
was slightly different from the one adopted for final design (Figure 3.4-41) (Ref. 57). Hence,
an additional SHAKE analysis was performed using the final material profile. Because the
values of maximum shear modulus were only slightly changed, a re-analysis was performed
using only the El Centro accelerogram, which was the most critical in the previous analyses.

3.4.3.4.8.6 Results: Empirical Methods

For the blowcount analysis, all of the SPT data from the 24 borings comprising boring groups
1, 2, and 4 were used. The SPT data were grouped by fines content into USCS groups A, B,
and C, and the results are plotted in Figure 3.4-62. The solid points represent SPT values
where the material classification data were confirmed by laboratory grain-size analyses. Solid
points with a cross are samples that had more than 20% finer than 0.074 mm or, where a
hydrometer analysis was performed, more than 15% finer than 0.005 mm. The open points
represent SPT values that were grouped according to their visual USCS classification. Grain-
size tests were performed on the samples with the lowest blowcounts, which are the most
critical to the analysis. The lowest SPT values are generally associated with materials having
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more than 10% fines and that a large percentage of the lowest SPT values are associated with
clayey sands that are considered not susceptible to seismic-induced ground failure. The corre-
sponding ground-failure criteria are also plotted in Figure 3.4-63 for groups A and C

(Ref. 35). For group B, the ground-failure criterion was chosen as the average of the criteria
for clean and silty sands.

The average blowcounts greatly exceed the failure criteria for the three USCS groups. There
is a wide scatter in the blowcount data, and a small percentage of SPT values fall below the
corresponding ground-failure criteria. These percentages are summarized below:

Elevation Zone Percentage of SPT Values
Below Ground Failure
Criteria

240 to 250 0 (0 out 0of43)

230 to 240 0 (0 out of 42)

220 to 230 16 (6 out of 38)

210 to 220 8 (3 out of 39)

200 to 210 3 (1 out of 33)

The blowcounts that fall below the ground-failure criteria lines occur randomly between
elevations 200 feet msl and 230 feet msl and do not correspond to a vertically or horizontally
continuous zone. During an earthquake, the weaker materials will be softer and will be
subjected to lower than average dynamic stresses. Because the ground-failure criteria are
upper limits of observed failures (Figures 3.4-63 and 3.4-64), even some of the lowest
blowcounts may not necessarily correspond to a ground-failure condition. The zone with the
largest percentage (16%) of low blowcounts occurs at a depth of 50 to 60 feet so that even if
isolated pockets of material were to soften at that depth the effect on surface structures would
be negligible. Thus, it is concluded that the blowcount analysis indicates that the potential for
liquefaction and cyclic mobility is negligible for the earthquake analyzed.

The CPT analysis was based on a fewer number of borings than the SPT analysis. However, a
continuous record of CPT versus depth was made in these borings, which provides a more
complete assessment of the material resistance than is provided by the SPT test obtained at 5-
feet intervals. The CPT analysis indicates that essentially all of the materials penetrated by
the cone penetrometer exceed the ground failure criterion established by Zhou (Ref. 50).
Thus, it is concluded that the CPT analysis indicates the potential for liquefaction for the
earthquake analyzed is negligible.
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3.4.3.4.8.7 Results: Analytical Methods

The slope of the steady-state line for the DWPF sands was estimated by plotting the undrained
steady-state shear strength estimated in each of the tests (15 tests) as a function of void ratio.
The average slope of the lines that encompass all of these data points was considered to be the
slope of the steady-state line corresponding to each specific specimen. This slope was
compared to steady-state lines for several sands and was considered to be a reasonable slope
for this material (Ref. 35). The slope was used as the basis for correcting (decreasing) the
steady-state shear strengths measured on the test specimens.

The assumed slope of the steady-state line and the corrected, undrained steady-state shear
strengths derived from each of the 15 consolidated-undrained triaxial tests are summarized in
Figure 3.4-65.

The driving shear stresses were computed for the Vitrification Building on the basis of a static

building load of 7.0 ksf (3.4 kg/cmz) using the computer program SSTABI. During DBE, the
distribution of stresses beneath the Vitrification Building change as the building accelerates.
The maximum stresses computed for this case are based on a trapezoidal distribution of
vertical stresses beneath the building varying from 2.1 ksf on one side of the building to 13.1

ksf (2.0 to 12.7 kg/cmz) on the other side of the building.

The driving stresses imposed by the Vitrification Building during the static condition and
during the safe shutdown earthquake are compared to the undrained steady-state shear
strength of the deposit in Figure 3.4-65. This figure shows that for 13 of the 15 test specimens
the applied static and dynamic shear stresses are less than the undrained steady-state shear
strengths. The two test specimens with relatively low, steady-state shear strengths
corresponds to two specimens of silty sand.

These data show that, in general, the steady-state shear strength of the deposit is significantly
greater than the static and peak dynamic shear stresses that are applied by the Vitrification
Building. Hence, for the earthquake analyzed, the building will not experience a bearing
capacity failure. However, some limited zones of material as represented by the two tests on
silty sand may be stressed to their steady-state shear strength, which will shift slightly higher
stresses into the stronger materials.

Cyclic Mobility - Stress Method

For the cyclic mobility evaluation, materials between elevations 200 feet msl and 250 feet
msl, were considered. The range of the average cyclic shear stress ratio produced by the
earthquake analyzed is 0.13 to 0.15 for this same interval. Thus, the computed factor of safety
against cyclic mobility is 2.1 to 2.5. The correction factors used for the evaluation were
intended to represent the best state-of-the-art estimate, but the selection of these factors
involves a considerable degree of judgment. However, any other correction factors that might
reasonably be chosen would likely result in satisfactory factors of safety against cyclic
mobility for the DWPF site.
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Cyclic Mobility - Strain Method

A method for predicting pore water pressure buildup and cyclic mobility of sands during
earthquakes has been developed (Ref. 40). This approach is based on the experimental
finding that there is a correlation between cyclic shear strain and pore water pressure buildup
of saturated sands that, at least for low strains, is independent of density and stress level and
applies to many sands. These correlations indicate that there is a threshold cyclic shear strain,
V¢ = 10'2%, below which there is no pore water pressure buildup in saturated sands.

Analysis requires in situ measurement of maximum shear modulus (Gmax) laboratory
measurement of G/Gmax versus shear strains, the threshold cyclic shear strain, and the pore
pressure-cyclic shear strain relationship.

The level of cyclic shear strain induced by the safe shutdown earthquake (y¢) is computed as a

function of the peak ground-surface acceleration and the shear modulus-shear strain
relationship. This value is compared to the threshold cyclic shear strain to assess the potential
for cyclic mobility.

Stress-controlled cyclic triaxial tests were performed in conjunction with the analysis
(Figure 3.4-66). For six of the 19 tests performed, the cyclic stresses were small, producing
cyclic strains that were essentially constant for the first 10 or more cycles.

The pore pressure ratios generated at the 10th cycle for these five tests are shown in

Figure 3.4-67(a). This figure is a plot of the relationship between pore pressure ratio and
cyclic shear strain prepared for tests on three different sands, using a variety of compaction
procedures and different confining pressures. This plot demonstrates the existence of a
threshold cyclic shear strain at about 107% and the relative unsensitivity of the pore pressure
versus cyclic shear strain plot to many test variables (Ref. 40).

Although the DWPF cyclic triaxial tests were not performed specifically for use in a cyclic
strain analysis, the data in Figure 3.4-67(a) suggest that use of the Dobry curve is reasonable
and possibly conservative for purposes of estimating the DWPF material behavior (Ref. 35).

Values of cyclic shear strains computed in the SHAKE analysis for the earthquakes analyzed

are shown in Figure 3.4-67(b). For cyclic shear strains of this magnitude, the plot in

Figure 3.4-67(a) suggests that the earthquakes will generate small pore pressures of 0 to 15%

of the effective confining pressure. Cyclic load tests indicate that these pore pressures do not

result in any measurable softening of the materials; thus, cyclic strains will remain very small,
and will not affect the undrained shear strength of the materials.

3.4.3.4.8.8 Summary of Liguefaction and Cyclic Mobility Analysis

The potential for ground failure (liquefaction and/or cyclic mobility) at the DWPF site was
evaluated using both empirical and analytical methods.
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The analysis of ground failure using the SPT approach indicated that limited pockets of
material do not meet established ground-failure criterion, but these were considered to be
zones that are not laterally continuous and, hence, pose no hazard to the DWPF facilities.

An analysis based on CPT data indicated that adequate resistance to ground failure was
encountered at all locations where CPT data was obtained. Because CPT data provide a
continuous profile of resistance versus depth, the results of the CPT analysis confirm the
conclusion made from the SPT data that low SPT values were random and that continuous
layers of weak materials were not found.

Analytical methods were used to evaluate the potential for liquefaction and cyclic mobility
independently. The analysis of liquefaction potential was based on the results of consolidated
undrained triaxial tests. These tests demonstrated that, in general, the materials are not
subject to liquefaction. A small percentage of tests (two out of 15) revealed that the steady-
state strength of limited zones of material was about equal to the driving shear stresses.
However, adequate resistance to the driving shear stresses will be developed in the stronger
materials that represent the typical subsurface conditions.

The potential for the occurrence of cyclic mobility was evaluated by two methods. The
analyses based on stress-controlled cyclic triaxial tests indicated that the factor of safety
against the development of significant cyclic strains (5% peak to peak) was at least 2.1.

Some of the data measured in the stress-controlled cyclic triaxial tests were reanalyzed using
the strain approach (Ref. 52). This analysis indicated that only limited pore pressures (on the
order of 0 to 15% of the effective stress) are likely to develop during the safe shutdown
earthquake. Pore pressures of this magnitude will result in very small cyclic strains and will
not affect the undrained shear strength of the material.

Hence, all of the analyses performed for the DWPF site indicate that there is an adequate
margin of safety against the occurrence of bearing capacity failure due to flow and cyclic
mobility (the development of significant strains).

These findings are further supported by the qualitative assessment of worldwide ground
failures. Youd and Perkins (Ref. 32) have correlated the occurrence of earthquake-induced
ground failures with the geological origin of the materials involved. These data show that
cohesionless deposits of pre-Pleistocene sand deposited in a coastal zone have a very low
likelihood of being susceptible to earthquake-induced ground failure. In fact, ground failures
in even the most susceptible type of material deposits (continental deposits in river channels,
flood plains, deltas) are generally limited to deposits of the Pleistocene Epoch or more recent
times. Youd and Perkins also pointed out that for water-table depths greater than about 33
feet, the likelihood of ground failure occurring is low. At the DWPF site, the groundwater
level in the “Upland unit” and Tobacco Road Formation ranges from 30 to 50 feet below the
ground surface (Ref. 60).
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Thus, it is concluded that there is overwhelming evidence that the DWPF soils will not
experience a significant liquefaction or deform excessively during the safe shutdown
earthquake.

3.43.4.9 TECHNIQUES TO IMPROVE SUBSURFACE CONDITIONS

Because of the critical nature of DWPF and the uncertainty in the characterization data,
Mueser recommended grouting of the Santee Formation underneath all Category I structures.
Figure 3.4-68 summarizes the abandonment grouting data compiled during the subsurface
investigation initiated by D'Appolonia (Ref. 28, 55, 60). This figure includes the grout take
ratio (grout take divided by nominal borehole volume), grouted depth, borehole diameter,
number of bags of cement, and the time charged to grouting. Grout takes were determined by
assuming one bag of cement yielded 2.2 cubic feet of grout. This assumed average grout
yield per cement bag was later confirmed by Girdler Exploration and Foundation Inc., the
drilling subcontractor for D'Appolonia. The grout take ratios presented in Figure 3.4-68 are
shown within the squares posted adjacent to the boring symbol.

In three of the four borings drilled at the location of the Glass Waste Storage building #1
(Bldg. 250-S), rod drops and/or calcareous materials were encountered (Ref. 60). In Boring
No. 86L1P, a rod drop of 5 feet occurred between elevations 143 and 138 feet msl.
Calcareous materials were noted on the field logs in Boring No. 83 and 84. Positive reaction
to dilute HCl occurred with some samples from Boring No. 84 between elevations 162 and
126 feet msl. In Boring No. 62, the only boring drilled within the limits of the Sand Filter
building (Bldg. S294), samples from elevations 164 to 139 feet msl, reacted positively to HCL.
However, in Boring No. 66, located immediately north of the Sand Filter building, no rod
drops or calcareous materials were noted. In Boring No. 159, located on the east wall of the
Fan House (Bldg. S292), a rod drop of 4 feet and low SPT blow counts occurred and
calcareous materials were noted by the field inspector. None of these indications of leached
conditions were noted in the borings beneath the Vitrification Building (Bldg. S221).
However, in Boring No. 24, located adjacent to the south side of the building, calcareous
material was noted between elevations 163 and 158 feet msl (Ref. 60).

Mueser, after reviewing the field data, noted a paucity of notations regarding the loss of
drilling fluid on the field logs (Ref. 60). Drawing on experience in F- and H-Areas, they
concluded that a loss of drilling mud typically precedes a rod drop or a zone of unusually low
penetration resistance. They also suggested for these zones that the amount of fluid loss is an
indicator of the size or extent of the highly porous materials. Because of the similarity of the
subsurface conditions in F-, H-, and S-Areas, Mueser also suggested that losses of circulation
probably had occurred in conjunction with rod drops in S-Area. However, loss of drilling
mud was noted by D'Appolonia for only one of the thirty-three borings which had indications
of soft zones. Temporary loss of 90% circulation was noted in Boring No. 25 at an
approximate elevation of 150 feet msl, immediately above a rod drop of 5 feet. Neither the
quantity of lost mud, the depth, nor the time of circulation return was recorded for that boring.

The scarcity of notations of fluid losses on the field logs implied to Mueser that either no
other mud losses had occurred or that mud losses had not been recorded. The latter
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explanation was preferred by Mueser et al., because some borings were drilled without
continuous inspection by D'Appolonia. D'Appolonia's field logs indicated that at least 10
borings were drilled between elevations 130 and 160 feet msl by the drillers without the
presence of D'Appolonia field personnel (Ref. 60). Also, Mueser et al. commented that in
their experience, very few drillers will note the loss of drilling mud unless specifically
requested.

On the basis of the data presented in Figure 3.4-68, Mueser concluded that some soft zones or
“voids” of limited lateral extent may exist within the area of Category I structures (Ref. 60).
They concluded that although these indications are not sufficient by themselves to definitely
conclude that extensive voids are present, or that the “voids” represent a severe threat to the
performance of the structures, the general lack of notations on the field logs of mud loss
during drilling was suspect and lead to a lack of confidence in the recorded information. This
implied that perhaps other important occurrences (rod drops or calcareous materials) were
unreported. Thus, a grouting program was implemented. Grout hole locations are shown on
Figure 3.4-69 for the Vitrification Building, and Figure 3.4-70 for the Glass Waste Storage
Building #1, Fan House and Sand Filter Buildings.

Drill rigs arrived at the site on March 7, 1984, and began drilling grout holes at the northern
end of the Vitrification Building (S221) (Ref. 33). Drilling continued southward within the
footprint of the Vitrification Building with grouting closely following the drilling operation.
The grout holes for the remaining Category I structures were drilled starting at the Fan House
(S292) and continued north to the Sand Filter (S294) and the Glass Waste Storage Building #1
(250-S). Also, four secondary grout holes were drilled and grouted in the Vitrification
Building. In all, 39 grout holes were completed by March 30, 1984 (Ref. 33).

The grout holes were drilled with truck-mounted drill rigs using four inch nominal diameter
tricone roller bits and drilling mud to maintain a stable borehole. During the contract period,
the location of the Fan House was moved 10 feet to the south. Therefore, some grout holes in
this area were drilled outside the building limits. Grout holes were generally advanced
without sampling from the ground surface to elevation 180 feet msl. The boreholes were then
advanced with split-spoon sampling at 5 feet intervals to a minimum elevation of 130 feet
msl, or approximately 10 feet below the base of the calcareous materials. All split spoon
samples were logged and classified by Mueser's resident engineer and tested for the presence
of calcareous materials (Ref. 33).

The grout was batched one tank at a time. Each tank was calibrated so that grout quantities
could be accurately recorded. A typical batch of grout was composed of one 94 1b. bag of
Type I cement; eight, 5 gallon buckets of sand (calibrated for 0.67 cf. per bucket); one-third of
a 50 Ib. bag of bentonite, and 30 gal of water. The grout yield per batch was approximately 7
cf. The bentonite was first premixed with water in a 130 gal tub to yield sufficient bentonite-
water slurry for 4.5 batches. When grouting could not begin on the same day a hole was
drilled, the open hole was flushed prior to grouting with water to remove any heavy drilling
mud and cuttings that had settled to the bottom. During the flushing operations and at the

start of grouting, the grout pipe was positioned approximately 1 feet above the bottom of the
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borehole. Before the grout was pumped, the levels of the grout mix within each tank were
recorded (Ref. 33).

Generally, grout was pumped at an initial pressure of less than 5 psi, measured at the top of
the grout pipe. When the pressure exceeded approximately 5 psi, pumping ceased and the
grout take and depth of the bottom of the grout pipe were recorded. The grout pipe was then
raised approximately 10 feet and grouting was restarted. Occasionally, a pressure of 20 psi
was required to initiate grout flow, but once flow was obtained, the pressure was decreased to
a maximum of 5 psi until the grout take ceased (Ref. 33).

The small grout take ratios (Figures 3.4-69 and 3.4-70) indicate that large leached zones do
not exist underneath DWPF facilities in the Santee Formation. Grout take ratios in all holes,
except Hole No. 2, varied from 0.9 to 2.7, with most of the ratios close to 1.3, indicating
stable ground conditions. Grout take ratios were calculated by dividing the grout take by the
theoretical or nominal volume of the borehole. The grout take ratio in Grout Hole No. 2 was
7.7, which appeared to be excessively high. Two secondary grout holes (Nos. 36 and 37)
were installed adjacent to Grout Hole No. 2 (Figure 3.4-69) to explore the reasons for this
relatively high grout take. The resulting grout take ratios in these secondary holes were
approximately 1.0, indicating that a large pocket was not present. It was later hypothesized
during a review of the records that the high grout take in Grout Hole No. 2 was probably due
to inadvertent high grouting pressure which caused local fracturing or compressing of the soil
mass (Ref. 33).

During drilling of the grout holes, isolated cases of rod drops, mud losses, and calcareous
materials were encountered in the north end of the Vitrification Building and the Glass Waste
Storage Building #1. These observations suggested the presence of thin layers of calcareous
materials that had been leached in the past. However, no voids or continuous layers of loose
soil with a fragile structure were encountered. At the Sand Filter building, calcareous material
was encountered in six grout holes between elevations 131 and 163 feet msl in layers up to 12
feet thick. This material and the overlying soils were typically medium dense to dense,
indicating significant leaching had not occurred (Ref. 33).

Calcareous material was also encountered in all five grout holes at the fan house between
elevations 142 and 162 feet msl in layers up to 7 feet thick. Very loose materials, including
two cases of rod drops, were encountered in the soils immediately overlying the calcareous
material. This suggested some leaching of the calcareous material and possible raveling of
the overlying soil into the leached zone. Like the sand filter building, the calcareous soil
underneath the fan house is generally medium dense to dense. Significant settlement due to
further leaching of this soil is not anticipated (Ref. 33).

3.4.3.4.10 CRITERIA AND DESIGN METHOD

Field and laboratory testing related to the DWPF was performed in accordance with the
American Society for Testing and Materials and the American National Standards Institute
standards. The field and laboratory investigations were covered by written quality control
procedures and monitored by a quality assurance program. The results of this testing are
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documented in Subsection 3.4.3.5. Analyses of settlement, bearing capacity, lateral earth
pressures, and cyclic liquefaction potential were performed in accordance with currently
accepted engineering principles and practices, as described in Subsection 3.4.3.5. Evaluation
criteria are described in these subsections.

3.43.4.11 RECENT EVALUATIONS

The evaluations drawn from the previous geotechnical and geological investigations were
reviewed in late 1994 with respect to current practice and knowledge at SRS (Ref. 31). This
study was performed to determine the technical adequacy of past work and the need for
additional investigations and/or analyses. This report included review of the past work that
addressed seismic soil criteria as well as comparison of new data and results for nearby
facilities which incorporated updated seismic criteria. The conclusions are as follows:

e The previous investigations performed were thorough and well-planned.

e Adequate characterization and analyses have been performed to assess the stability of
the foundation soils.

e The subsurface conditions at DWPF are similar and consistent with those found at
other facilities in H- and S-Areas.

e No design basis geologic nor geotechnical hazards that would adversely affect DWPF
were identified.

o Post-construction settlement measurements at DWPF confirm the geotechnical
parameters used in the settlement analysis as well as confirm the static stability of the
subsurface soils.

o Previous and current liquefaction susceptibility analysis show that the soils beneath
DWPF will not liquefy for the seismic events analyzed.

o Dynamic settlement analyses for the current site distant Design Basis Earthquake
(DBE) indicate that the dynamic foundation settlement will be less than 0.5 inches.

Based on results of this review, no further geotechnical work involving field characterization,
laboratory testing, or engineering analyses is required for DWPF. The continuation of the
settlement monitoring program for the Vitrification Building at DWPF was recommended in
the review report (Ref. 31).

The settlement monitoring program for the Vitrification Building is being implemented as part

of the DWPF Structural Integrity Program, which addresses the specific locations of the
settlement measurements as well as the frequency of the measurements.
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3.5 NATURAL PHENOMENA THREATS

This section provides identification of specific natural phenomena events considered to be
potential accident initiators. Three specific events were considered: floods, earthquakes and
tornadoes.

3.5.1 FLOODS

All of the floods represented by site data in SRNS-IM-2013-00019, Site Information and
Program Description (Ref. 3) were the result of excess precipitation runoff and the associated
creek or stream flooding. It was concluded that flooding is not a credible hazard for DWPF
because of S-Area being located on a relatively elevated region of SRS. The adjacent streams
are in broad valleys and are more than 100 feet lower in elevation than the DWPF grade. For
these reasons, Chapter 9 of the FSAR states that there are no credible radiological or chemical
source terms associated with rain and floods.

For additional details, see Subsection 3.4.2.1.
3.5.2 EARTHQUAKES

Earthquakes are discussed in Subsection 3.4.3.2. The hazard and accident analysis related to
the design basis earthquake (DBE) [synonymous to safe shutdown earthquake (SSE) in
Chapter 3] is discussed in Chapter 9.

3.5.3 TORNADOES

Tornadoes are discussed in Subsection 3.4.1. The hazard and accident analysis related to high
winds and tornadoes is included in Chapter 9.
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3.6 EXTERNAL MAN-MADE THREATS

This section provides identification of specific external man-made phenomena associated with
the site considered to be potential accident initiators, exclusive of sabotage and terrorism. The
two man-made phenomena considered are transportation effects and missile and blast effects.

3.6.1 TRANSPORTATION

During the history of SRS operations, numerous transportation incidents have occurred on the
site (as documented below). One single-engine plane landed on an onsite highway during a
period of low ground traffic density (the pilot avoided highway vehicles). A single-engine
plane crash landed on the entrance road to the railroad Classification Yard. A helicopter
crashed on the site in April 1989 while applying fertilizer to the pine forest. A security patrol
helicopter crash on the site in September 1985 did not cause any hazardous substance release.
An Edgerton, Gremeshausen and Grier, Inc. (EG&G) survey helicopter landed in the burial
ground area when its engine malfunctioned, and an amphibian plane landed at Par Pond when
the pilot mistook it for Thurmond Lake (formerly Clarks Hill Reservoir). There have been no
documented cases of transportation-related incidents in S-Area.

See SRNS-IM-2013-00019, Site Information and Program Description for a discussion of
offsite and onsite roads/highways and SRS railroads as well as the location of airports and
airspace within the general area of SRS (Ref. 3).

3.6.2 MISSILE AND BLAST EFFECTS

The hazard and accident analysis related to missiles and blast effects is included in Chapter 9.
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3.7 NEARBY FACILITIES

The Vogtle Electric Generating Plant (VEGP), a two-unit nuclear power plant licensed by the
NRC and located across the Savannah River from SRS, is the only nearby nuclear facility that
would have the potential of affecting SRS operations due to an emergency situation. Other
nearby nuclear facilities include:

e Chem Nuclear Systems Inc. (CNSI), a low level nuclear waste disposal facility,
located near the eastern boundary of SRS.

e Transnuclear Inc. located in Aiken County, SC, a transporter of both HLW and LLW
to various disposal facilities, and a provider of decontamination services.

e Carolina Metals Inc. located in Barnwell, SC, a processor of depleted uranium
hexafluoride for the US Department of Defense (DOD).

Additionally, the Barnwell Nuclear Plant, which never operated, is located near the SRS
eastern boundary. Originally built to chemically reprocess commercial reactor fuels, the plant
never stored or handled spent irradiated nuclear fuel because of a federal policy to defer
reprocessing.

There are five reactor facilities (i.e., K, R, C, P and L Reactors) located within a 10-mile
radius of DWPF, all permanently shutdown. Nuclear fuel elements and target assemblies,
previously irradiated in reactors, are processed in the F-and H-Canyon facilities, located in F
and H-Areas respectively. Primary operations include dissolution followed by chemical and
physical separation and purification of materials. Liquid radioactive wastes are stored in the
F- and H-Area Tank Farms for future processing and disposal in the Defense Waste
Processing Facility (S-Area) and the Saltstone Facility (Z-Area). There are approximately
35,000,000 gallons of liquid high level radioactive waste currently stored in underground
tanks in these two areas.

H-Area also contains tritium facilities which extract tritium from irradiated reactor targets.
These facilities have the potential to releases significant quantities of tritium. Risks to the
safety of DWPF as a result of H-Area operations are minimal except for tritium releases.

The reactor material facilities are located approximately 6 miles from S-Area. The facility no
longer processes aluminum, lithium, uranium, and other materials for SRS reactors and poses
no risk to S-Area because of the distance between the two facilities.

The heavy water plant, located approximately 8 miles from S-Area, is no longer in operation
and poses no undue risk to facilities in S-Area.

E-Area is located approximately 1 mile from DWPF. It is used for disposal of SRS solid
radioactive waste and poses no undue risk to DWPF.

Z-Area, located adjacent to S-Area, processes and disposes of decontaminated salt solution
supernates from F- and H-Area waste tanks and contaminants removed by the Effluent
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Treatment Facility Project (ETP). The Saltstone process is considered a low hazard operation
and thus poses no significant risk to DWPF.

For a discussion of the industries within a 5-mile radius of SRS, their addresses, employment
size, and primary products or purposes, see SRNS-IM-2013-00019, Site Information and
Program Description. SRNS-IM-2013-00019, Site Information and Program Description
discusses the active military installations in SC and GA in relation to SRS (Ref. 3).

As discussed in SRNS-IM-2013-00019, Site Information and Program Description (Ref. 3),
Bush Field in Augusta , GA and the Columbia Municipal Airport in Lexington County, SC,
are the only two airports within 65 miles of SRS that provide scheduled air passenger
services. Barnwell County Airport, a small, general aviation facility, is the closest airport to
the SRS boundary.
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3.8 VALIDITY OF EXISTING ENVIRONMENTAL ANALYSES

Site characteristic assumptions from this chapter and the SRNS-IM-2013-00019, Site
Information and Program Description (Ref. 3) were included in the Final Supplemental
Environmental Impact Statement (EIS) for DWPF, DOE/EIS-0082-S (Ref. 62). A
supplemental EIS for the DWPF was issued in November 1994 to address design changes to
the facility since issuance of the 1982 EIS (Ref. 61). Another supplemental EIS was issued in
June 2001 to address alternatives for separating the high-activity and low-activity fractions of
the HLW salt solution (Ref. 65). No significant discrepancies exist between the Supplemental
EIS’s and this chapter of the DWPF FSAR (Ref. 61, 62, 65).
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3.10 TABLES
Table 3.4-1 Elevations of Piezometers Used in the Preliminary Investigation
at the DWPF Site
Well Ground Elevation Screen Zone Elevation Zone Monitored
(ft msl) (ft msl)
BH 2 259.3 (46.2-48.7)* 4
BH 3 276.0 154.5-152.0 6
BH 4 283.7 97.7-95.2 5
BH 6 276.9 180.4-177.9 6
BH 6B 276.7 233.2-230.7 Tc
BH 8 271.6 45.1-42.6 5
BH 9 273.2 (22.3-24.8)° 4
BH 13 304.8 0.3-(2.2)® 4
BH 14 285.4 247.9-245.4 Tc
BH 15 267.4 101.9-99.4 5
BH 17A 284.0 220.5-218.0 Tc
BH 20A 283.0 (30.0-33.0)° 4
BH21A 278.0 84.0-78.0 5
BH 23A 288.4 241.4-238.4 Tc
BH 48B 2834 164.4-161.4 6
BH 50A 282.9 (24.1-27.1)° 4
BH 62A 268.9 153.1-150.9 6
BH 64A 275.9 46.4-43.4 5
BH 69A 284.7 85.7-82.7 5
BH 75A 271.0 224.0-221.0 Tc
BH 82 264.3 202.8-200.3 Tc
BH 86 267.1 (41.4-43.9)® 4
BH 98A 276.6 147.6-144.6 6
HC %A 269.3 123.8 5
HC 9B 269.3 174.7 6
HC 13B 291.3 193.3 6
HC 13C 291.3 207.1 Tc
HC 16A 262.6 118.1 5
HC 16B 262.6 183.6 Tc
RSS 1 293.4 ~217 7c
RSS2 276.9 ~201 Tc
RSS 3 264.2 ~198 6
RSS 4 289.1 ~238 7c
RSS 5 292.7 ~215 7c

2 Numbers in parenthesis indicate feet below msl.
Reference 22: Exploration Software (1989)
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Table 3.4-2 Results of Ground-Water Monitoring for the DWPF Site
Well SBG 1
SRS Grid N 74619.4 Screen Zone Elev. 218.4 - 188.4 ft
Coordinates E 63749.1 Screen Zone Depth 42.0-72.0 ft
Drill Depth 72.0 ft

Latitude 33.294822°N Casting Elevation 262.4 ft
Longitude 81.643880°W Casting Material PVC
Parameter Units 03/26/86 05/29/86 08/25/86 10/07/86
Sampling Method Pump Pump Pump Pump
Water table Meters 72.5 72.4 72.3 723

Elevation Feet 237.7 237.4 237.1 237.3
pH pH 4.1 4.3 4.5 4.7
Conductivity pmho/cm 30 36 45 47
Arsenic mg/L <0.002 - <0.001 <0.002
Barium mg/L 0.013 - 0.013 0.013
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - <0.002 <0.002
Chloride mg/L 4.0 - 34 4.0
Chromium mg/L >0.004 - <0.004 <0.004
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - 0.40 <0.10
Iron mg/L 0.028 - 0.012 0.020
Lead mg/L 0.021 - 0.028 0.014
Manganese mg/L 0.018 - 0.020 0.020
Mercury mg/L 0.0006 - 0.0007 0.0010
Nickel mg/L - - - -
Selenium mg/L <0.002 - <0.002 <0.002
Silver mg/L <0.0020 - <0.0020 <0.0020
Sodium mg/L 4.28 - 4.86 4.45
Zinc mg/L - - - -
NOs (as N) mg/L 2.12 - 2.22 2.23
SO4 mg/L <5.0 - <5.0 <3.0
Phenols mg/L <0.002 - <0.002 <0.002
Tot. org. carbon mg/L <1.000 - <1.000 <2.000
Tot. org. halogen mg/L 0.005 - 0.006 <0.005
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <2.0 - 23 1.4
Nonvol. beta pCi/L <3.0 - 1.7 1.6
Total radium pCi/L <1.0 - 1.0 1.2
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Table 3.4-2  Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 1
SRS Grid N 74619.4 Screen Zone Elev. 218.4-188.4 ft

Coordinates E 63749.1 Screen Zone Depth 42.0-72.0ft
Drill Depth 72.0 ft

Latitude 33.294822°N Casting Elevation 262.4 ft
Longitude 81.643880°W Casting Material PVC
Parameter Units 01/20/87 04/30/87 08/12/86 10/22/87
Sampling Method Pump Pump Pump Pump
Water elevation Meters 72.4 73 73 72.8
pH pH 4.0 4.7 5.0 4.8
Conductivity pmho/cm 54 43 39 41
TDS mg/L 26 - - -
Arsenic mg/L <0.002 - - -
Barium mg/L 0.015 - - -
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - - -
Calcium mg/L 0.843 - - -
Chloride mg/L 3.7 - - -
Chromium mg/L <0.004 - - -
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - -
Iron mg/L 0.014 - - -
Lead mg/L 0.006 - 0.006 -
Magnesium mg/L 0.695 - - -
Manganese mg/L 0.020 - - -
Mercury mg/L 0.0006 - 0.0006 -
Nickel mg/L - - - -
Potassium mg/L 0.445 - - -
Selenium mg/L <0.002 - - -
Silica mg/L 3.85 - - -
Silver mg/L <0.0020 - - -
Sodium mg/L 4.43 - - -
Total phosphate mg/L 0.020 - - -
Zinc mg/L - - - -
NOs (as N) mg/L 2.50 - - -
SO, mg/L <3.0 - - -
Phenols mg/L <0.002 - - -
Tot. org. carbon mg/L <1.000 - <1.000 -
Tot. org. halogen mg/L <0.005 - 0.015 -
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <3.0 - - -
Nonvol. beta pCi/L 2.5 - - -
Total radium pCi/L 1.0 - - -
Tritium pCi/mL 22.5 - 23.2 -
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Table 3.4-2  Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 2
SRS Grid N 74570.2 Screen Zone Elev. 234.0-204.0 ft
Coordinates E 64939.6 Screen Zone Depth 54.0 - 84.0 ft
Drill Depth 84.0 ft

Latitude 33.296655°N Casting Elevation 290.0 ft
Longitude 81.640649°W Casting Material PVC
Parameter Units 03/26/86 05/29/86 09/09/86 10/07/86
Sampling Method Pump Pump Pump Pump
Water table Meters 72.6 723 72.4

Elevation Feet 238.1 237.9 237.1 237.4
pH pH 4.5 4.6 4.7
Conductivity pmho/cm 12 22 23
Arsenic mg/L <0.002 <0.001 <0.002
Barium mg/L 0.005 0.004 0.004
Beryllium mg/L - - -
Cadmium mg/L <0.002 <0.002 <0.002
Chloride mg/L 23 2.8 23
Chromium mg/L <0.004 <0.004 <0.004
Copper mg/L - - -
Cyanide mg/L - - -
Fluoride mg/L <0.10 0.10 <0.10
Iron mg/L 0.015 0.014 0.018
Lead mg/L 0.018 1.018 0.016
Manganese mg/L 0.021 0.020 0.021
Mercury mg/L <0.0002 <0.0002 <0.0002
Nickel mg/L - - -
Selenium mg/L <0.002 <0.002 <0.002
Silver mg/L <0.0020 <0.0020 <0.0020
Sodium mg/L 0.83 1.39 1.00
Zinc mg/L - - -
NO;s (as N) mg/L 0.85 0.78 0.85
SO4 mg/L <5.0 <3.0 <3.0
Phenols mg/L <0.002 <0.002 <0.002
Tot. org. carbon mg/L <1.000 <1.000 <1.000
Tot. org. halogen mg/L <0.005 <0.005 0.005
Carbon tet. mg/L - - -
Chloroform mg/L - - -
Tetrachloroethene mg/L - - -
Trichloroethene mg/L - - -
1.1.1-TCE mg/L - - -
Gross alpha pCi/L <2.0 <3.0 <3.0
Nonvol. beta pCi/L <3.0 1.9 <2.0
Total radium pCi/L <1.0 <1.0 <1.0
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Table 3.4-2  Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 2
SRS Grid N 74570.2 Screen Zone Elev. 234.0-204.0 ft
Coordinates E 64939.6 Screen Zone Depth 54.0-84.0 ft
Drill Depth 84.0 ft
Latitude 33.296655°N Casting Elevation 290.0 ft
Longitude 81.640649°W Casting Material PVC
Parameter Units 01/20/87 04/30/87 07/29/87 10/05/87
Sampling Method Pump Pump Pump Pump
Water Table Meters 72.3 72.8 72 73.1
pH pH 4.0 4.8 5.0 5.1
Conductivity pmho/cm 30 21 22 20
TDS mg/L 44 - - -
Arsenic mg/L <0.002 - - -
Barium mg/L 0.005 - - -
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - - -
Calcium mg/L 0.629 - - -
Chloride mg/L 2.5 - - -
Chromium mg/L <0.004 - - -
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - - -
Iron mg/L 0.013 - -
Lead mg/L 0.020 - 0.012 -
Magnesium mg/L 0.492 - - -
Manganese mg/L 0.020 - - -
Mercury mg/L <0.0002 - <0.0002 -
Nickel mg/L - - - -
Potassium mg/L 0.299 - - -
Selenium mg/L <0.002 - - -
Silica mg/L 333 - - -
Silver mg/L <0.0020 - -
Sodium mg/L 1.08 - -
Total phosphate mg/L 0.020 - - -
Zinc mg/L - - - -
NOs (as N) mg/L 0.82 - - -
SO4 mg/L <3.0 - - -
Phenols mg/L <0.002 - - -
Tot. org. carbon mg/L <1.000 - <1.000 -
Tot. org. halogen mg/L <0.005 - <0.005 -
Carbon tet. mg/L - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <3.0 - -
Nonvol. beta pCi/L 2.7 - - -
Total radium nCi/l. <1.0 - - -
Tritium pCi/mL 14.9 - 16.4 -
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Table 3.4-2  Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 3
SRS Grid N 73699.9 Screen Zone Elev. 234.6-204.6 ft
Coordinates E 65265.6 Screen Zone Depth 50.0 - 80.0 ft
Drill Depth 80.0 ft

Latitude 33.295262°N Casting Elevation 286.6 ft
Longitude 81.638100°W Casting Material PVC
Parameter Units 03/26/86 05/29/86 08/09/86 10/07/86
Sampling Method Pump Pump Pump Pump
Water table Meters 72.6 72.5 72.3 72

Elevation Feet 238.3 237.7 237.2 236.2
pH pH 4.1 4.9 4.5 5.0
Conductivity pmho/cm 12 13 20 21
Arsenic mg/L <0.002 - <0.001 <0.002
Barium mg/L 0.005 - <0.004 <0.004
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - 0.002 <0.002
Chloride mg/L 2.9 - 5.7 1.7
Chromium mg/L <0.004 - <0.004 <0.004
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - 0.10 <0.10
Iron mg/L 0.016 - 0.008 0.018
Lead mg/L 0.015 - 0.012 0.010
Manganese mg/L 0.018 - 0.019 0.018
Mercury mg/L <0.0002 - <0.0002 <0.0003
Nickel mg/L - - - -
Selenium mg/L <0.002 - <0.002 <0.002
Silver mg/L <0.0020 - <0.0020 <0.0020
Sodium mg/L 1.08 - 1.43 1.17
Zinc mg/L - - - -
NO; (as N) mg/L 0.50 - 0.56 0.57
SO4 mg/L <5.0 - <3.0 <3.0
Phenols mg/L <0.002 - <0.002 <0.002
Tot. org. carbon mg/L <1.000 - <1.000 <1.000
Tot. org. halogen mg/L 0.006 - <0.005 <0.005
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <2.0 - <3.0 <3.0
Nonvol. beta pCi/L <3.0 - 1.9 <2.0
Total radium pCi/L <1.0 - <1.0 <1.0
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Table 3.4-2  Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 3
SRS Grid N 73699.9 Screen Zone Elev. 234.6-204.6 ft
Coordinates E 65265.6 Screen Zone Depth 50.0 - 80.0 ft
Drill Depth 80.0 ft
Latitude 33.295262°N Casting Elevation 286.6 ft
Longitude 81.638100°W Casting Material PVC
Parameter Units 01/20/87 04/30/87 07/29/87 10/05/87
Sampling Method Pump Pump Pump Pump
Water elevation Meters 72.3 72.8 72.8 73
pH pH 4.1 4.3 5.1 52
Conductivity pmho/cm 30 20 28 18
TDS mg/L 52 - - -
Arsenic mg/L <0.002 - - -
Barium mg/L 0.005 - - -
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - - -
Calcium mg/L 0.507 - - -
Chloride mg/L 23 - - -
Chromium mg/L <0.004 - - -
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - - -
Iron mg/L 0.014 - - -
Lead mg/L 0.012 - 0.012 -
Magnesium mg/L 0.327 - - -
Manganese mg/L 0.017 - - -
Mercury mg/L <0.0002 - <0.0002 -
Nickel mg/L - - - -
Potassium mg/L 0.231 - - -
Selenium mg/L <0.002 - - -
Silica mg/L 2.81 - - -
Silver mg/L <0.0020 - - -
Sodium mg/L 1.13 - - -
Total phosphate mg/L 0.030 - - -
Zinc mg/L - - - -
NOs (as N) mg/L 0.60 - - -
SO, mg/L <3.0 - - -
Phenols mg/L <0.002 - - -
Tot. org. carbon mg/L <1.000 - <1.000 -
Tot. org. halogen mg/L <0.005 - 0.005 -
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <3.0 - - -
Nonvol. beta pCi/L <2.0 - - -
Total radium pCi/L <1.0 - - -
Tritium pCi/mL 16.5 - 16.1 -
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Table 3.4-2  Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 4
SRS Grid N 72399.8 Screen Zone Elev. 213.1-183.1 ft
Coordinates E 65010.2 Screen Zone Depth 58.0 - 88.0 ft
Drill Depth 88.8 ft

Latitude 33.291968°N Casting Elevation 273.1 ft
Longitude 81.636248°W Casting Material PVC
Parameter Units 03/26/86 05/29/86 08/25/86 10/07/86
Sampling Method Pump Pump Pump Pump
Water table Meters 73.5 73.2 73.1 72.8

Elevation Feet 241.2 240 239.8 239
pH pH 43 5.0 4.6 4.9
Conductivity pmho/cm 21 24 32 33
Arsenic mg/L <0.002 - <0.001 <0.002
Barium mg/L 0.009 - 0.009 0.008
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - <0.002 <0.002
Chloride mg/L 2.9 - 2.8 2.8
Chromium mg/L <0.004 - <0.004 <0.004
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - 0.41 <0.10
Iron mg/L 0.017 - 0.012 0.010
Lead mg/L 0.020 - 0.062 0.034
Manganese mg/L 0.014 - 0.010 0.009
Mercury mg/L <0.0002 - <0.0002 <0.0002
Nickel mg/L - - - -
Selenium mg/L <0.002 - <0.002 <0.002
Silver mg/L <0.0020 - <0.0020 <0.0020
Sodium mg/L 2.04 - 2.63 1.99
Zinc mg/L - - - -
NOs; (as N) mg/L 1.40 - 1.43 1.35
SO4 mg/L <5.0 - <5.0 <3.0
Phenols mg/L <0.002 - <0.002 <0.002
Tot. org. carbon mg/L <1.000 - <1.000 <1.000
Tot. org. halogen mg/L 0.032 - 0.034 0.032
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <2.0 - 2.4 1.5
Nonvol. beta pCi/L <3.0 - 7.7 73
Total radium pCi/L <1.0 - 1.2 1.1
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Table 3.4-2 Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 4
SRS Grid N 72399.8 Screen Zone Elev. 213.1-183.1 ft

Coordinates E 65010.2 Screen Zone Depth 58.0 - 88.0 ft
Drill Depth 88.8 ft

Latitude 33.291968°N Casting Elevation 273.1 ft
Longitude 81.636248°W Casting Material PVC
Parameter Units 01/20/87 04/30/87 07/29/87 10/05/87
Sampling Method Pump Pump Pump Pump
Water table Meters 73.3 73.5 73.5 73.6
pH pH 3.8 4.8 5.5 5.0
Conductivity pmho/cm 36 31 30 28
TDS mg/L 34 - - -
Arsenic mg/L <0.002 - - -
Barium mg/L 0.010 - - -
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - - -
Calcium mg/L 0.674 - - -
Chloride mg/L 2.1 - - -
Chromium mg/L <0.004 - - -
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - - -
Iron mg/L 0.014 - -
Lead mg/L 0.020 - 0.014 -
Magnesium mg/L 0.539 - - -
Manganese mg/L 0.007 - - -
Mercury mg/L <0.0002 - <0.0002 -
Nickel mg/L - - - -
Potassium mg/L 0.286 - - -
Selenium mg/L <0.002 - - -
Silica mg/L 3.12 - - -
Silver mg/L <0.0020 - -
Sodium mg/L 1.88 - -
Total phosphate mg/L <0.020 - - -
Zinc mg/L - - - -
NO; (as N) mg/L 1.40 - - -
SO, mg/L <3.0 - - -
Phenols mg/L <0.002 - - -
Tot. org. carbon mg/L <1.000 - <1.000 -
Tot. org. halogen mg/L <0.033 - 0.039 -
Carbon tet. mg/L - - <0.005
Chloroform mg/L - - <0.005 -
Tetrachloroethene mg/L - - 0.005 -
Trichloroethene mg/L - - 0.111 -
1.1.1-TCE mg/L - - <0.005 -
Gross alpha pCi/L 32 - -
Nonvol. beta pCi/L 10.4 - - -
Total radium pCi/L <1.0 - - -
Tritium pCi/mL 9.67 - 10.7 -
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Table 3.4-2 Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 5
SRS Grid N 72208.3 Screen Zone Depth 66.9-60.8 meters

Coordinates E 64499.0 Top of casing elevation 86.71 meters

Latitude 33.290712°N Casting Material PVC
Longitude 81.637223°W
Parameter Units 03/16/87 05/02/87 08/12/87 11/11/87
Sampling Method Pump Pump Pump Pump
Water elevation Meters 75.8 76 76 75.8
pH pH 7.3 7.1 7.0 7.0
Conductivity pmho/cm 92 75 63 58
TDS mg/L 54 56 40 64
Arsenic mg/L <0.002 <0.002 <0.002 <0.002
Barium mg/L 0.015 0.013 0.012 0.014
Beryllium mg/L - - - -
Cadmium mg/L <0.002 <0.002 <0.002 <0.002
Calcium mg/L 13.5 9.38 5.21 10.5
Chloride mg/L 2.9 1.7 2.7 2.7
Chromium mg/L <0.004 <0.004 <0.004 <0.004
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L 0.17 0.39 <0.10 <0.10
Iron mg/L 0.019 0.071 0.008 0.058
Lead mg/L <0.006 <0.006 <0.006 <0.006
Magnesium mg/L 0.258 0.283 0.280 -
Manganese mg/L 0.006 0.010 0.008 0.010
Mercury mg/L <0.0002 <0.0002 <0.0002 <0.0002
Nickel mg/L - - - -
Potassium mg/L 1.51 0.920 0.787 0.856
Selenium mg/L <0.002 <0.002 <0.002 <0.002
Silica mg/L 293 3.60 3.15 -
Silver mg/L <0.0020 <0.0020 <0.0020 0.0030
Sodium mg/L 3.55 3.10 2.60 2.53
Total phosphate mg/L 0.030 0.030 0.030 <0.020
Zinc mg/L - - - -
NOs (as N) mg/L 0.68 0.45 0.93 1.05
SO4 mg/L <5.0 2.5 <5.0 <5.0
Phenols mg/L <0.002 <0.005 <0.005 <0.049
Tot. org. carbon mg/L <1.000 <1.000 <1.000 33.2
Tot. org. halogen mg/L 0.015 0.009 0.016 <0.018
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <3.0 <3.0 <3.0 -
Nonvol. beta pCi/L 3.0 <2.0 2.0 -
Total radium pCi/L 0.9 1.0 0.8 -
Tritium pCi/mL 3.85 0.10 4.30 5.40
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Table 3.4-2 Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 6
SRS Grid N 73599.3 Screen Zone Elev. 240.7-210.7 ft

Coordinates E 63860.0 Screen Zone Depth 39.0-69.0 ft
Drill Depth 69.0 ft

Latitude 33.292746°N Casting Elevation 281.7 ft
Longitude 81.641607°W Casting Material PVC
Parameter Units 03/26/86 05/29/86 08/25/86 10/07/86
Sampling Method Pump Pump Pump Pump
Water table Meters 74.4 74.2 74.1 74
elevation Feet 244.2 243.4 243 242.9
pH pH 4.2 4.7 4.7 4.8
Conductivity pmho/cm 25 28 40 39
Arsenic mg/L <0.002 - 0.003 <0.002
Barium mg/L 0.011 - 0.011 0.011
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - <0.002 <0.002
Chloride mg/L 4.6 - 34 3.34
Chromium mg/L <0.004 - <0.004 <0.004
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - 0.10 <0.10
Iron mg/L 0.020 - 0.014 0.097
Lead mg/L 0.021 - 0.039 0.027
Manganese mg/L 0.017 - 0.014 0.014
Mercury mg/L <0.0002 - <0.0002 <0.0002
Nickel mg/L - - - -
Selenium mg/L <0.002 - <0.002 <0.002
Silver mg/L <0.0020 - <0.0020 <0.0020
Sodium mg/L 3.25 - 4.60 3.78
Zinc mg/L - - - -
NOs (as N) mg/L 1.65 - 1.70 1.64
SO4 mg/L <5.0 - <5.0 <3.0
Phenols mg/L <0.002 - <0.002 <0.002
Tot. org. carbon mg/L <1.000 - 1.000 <1.000
Tot. org. halogen mg/L <0.006 - <0.005 0.005
Carbon tet. mg/L - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <2.0 - 1.1 1.0
Nonvol. beta pCi/L <3.0 - 1.8 <2.0
Total radium pCi/L <1.0 - <1.0 1.0

3.10-11



WSRC-SA-6

Rev 37
November 2018
Table 3.4-2 Results of Ground-Water Monitoring for the DWPF Site (Continued)
Well SBG 6
SRS Grid N 73599.3 Screen Zone Elev. 240.7-210.7 ft
Coordinates E 63860.0 Screen Zone Depth 39.0-69.0 ft
Drill Depth 69.0 ft
Latitude 33.292746°N Casting Elevation 281.7 ft
Longitude 81.641607°W Casting Material PVC
Parameter Units 02/07/87 04/30/87 07/29/87 10/05/87
Sampling Method Pump Pump Pump Pump
Water elevation Meters 74.3 74.7 74.7 74.8
pH pH 4.7 4.9 5.5 52
Conductivity pmho/cm 45 35 35 34
TDS mg/L 22 - - -
Arsenic mg/L <0.002 - - -
Barium mg/L 0.012 - - -
Beryllium mg/L - - - -
Cadmium mg/L <0.002 - - -
Calcium mg/L 0.680 - - -
Chloride mg/L 3.7 - - -
Chromium mg/L <0.004 - - -
Copper mg/L - - - -
Cyanide mg/L - - - -
Fluoride mg/L <0.10 - - -
Iron mg/L 0.006 - - -
Lead mg/L 0.024 - 0.017 -
Magnesium mg/L 0.480 - - -
Manganese mg/L 0.012 - - -
Mercury mg/L <0.0002 - <0.0002 -
Nickel mg/L - - - -
Potassium mg/L 0.437 - - -
Selenium mg/L <0.002 - - -
Silica mg/L 3.34 - - -
Silver mg/L <0.0020 - - -
Sodium mg/L 4.14 - - -
Total phosphate mg/L 0.030 - - -
Zinc mg/L - - - -
NOs (as N) mg/L 1.75 - - -
SO4 mg/L <3.0 - - -
Phenols mg/L <0.002 - - -
Tot. org. carbon mg/L <1.000 - 1.40 -
Tot. org. halogen mg/L 0.005 - <0.005 -
Carbon tet. mg/L - - - -
Chloroform mg/L - - - -
Tetrachloroethene mg/L - - - -
Trichloroethene mg/L - - - -
1.1.1-TCE mg/L - - - -
Gross alpha pCi/L <3.0 - -
Nonvol. beta pCi/L 1.6 - - -
Total radium pCi/L 1.3 - - -
Tritium pCi/mL 12.2 - 12.8 -

Reference 23, Mikol et al. (1988): Reference 26, Zeigler et al. (1987)
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Table 3.4-3 Flow Velocities and Travel Times of Ground Water Along Flow Path
Segment Head Head Segment Travel
Flow Path Length Change Gradient Velocity Time
Segment (ft) (ft) (ft/ft) (ft/yr) (yr)

A 320 2 0.0063 117 2.7
B 260 5 0.019 352 0.7
C 220 5 0.023 427 0.5
D 140 5 0.036 668 0.2
E 750 18 0.024 445 1.7
Total 5.8

Note: K (hydraulic conductivity) = 12.7 ft/day
¢ (effective porosity) =0.25
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Table 3.4-4 Radionuclide Concentrations at Postulated Leak and at Groundwater
Outcrop
Initial Conc. at Leak Concentration Reduced
Exposure Conc. after by
Conc. 7.4 yr of decay Ton by
Sludge Supernate tip? Guide (Ci/gal) Exchange Dispersion
Isotope (Ci/gal) (Ci/gal) (yr) (Ci/gal) Ky° (Ci/gal) (Ci/gal)
*H - 3.2x10% 12.3 1.1x10° 2.1x10* 0 2.1x10* 7.6x 10710
“Co 2.9x 10! - 53 1.1x107 1.1x 10! 1000 ¢ ¢
*Ni 2.4x103 - 8 x 10* ND ¢ 2.4x103 ND 2.4x103 8.6x10°
O3Ni 3.0x 10! - 9.2x 10! ND 2.8x 10" ND 2.8x 10! 1.0x 10
“Se 2.3x 10 - 6.5x 10* 1.1x10°% 23x10* ND 23x10* 8.3x 10
8Rb 1.6x 108 - 5x 10" 3.8x 107 1.6x 108 ND 1.6x10* 5.8x 10
NSr 52x 10! - 28.1 1.1x10° 43x 10 6 (2) 1.3x10? 4.7x10°%
0y 5.3x 10! - 7.3x103 7.6x 10 ¢ ND ¢ ¢
B7r 1.9x 103 - 1.5x10° 3.0x10° 1.9x 107 10% (1) 1.5x103 54x10°
S7Zr 1.7x10° - 1.8x 10! 23x107 ¢ 10% (1) ¢ ¢
%Nb 9.4x107 - 2.0x10* ND 9.4x 107 ND 9.4 x 107 3.4x107"
% Nb 3.7x10° - 9.6x10? 3.8x10% ND ND ¢ -
PTc 43x10° - 2.1x10° 1.1x10° 43x10° 0 (1) 43x10% 1.5x10°®
106Ry 2.7 - 1.0 3.8x10% 1.5x 1072 100 (2) ¢ ¢
106Rh 2.6 - 9.5x 107 ND ¢ ND ¢ ¢
107pq 1.6 x 10° - ~7x 10° 1.1x10°% 1.6 x 10° ND 1.6x 10° 5.8x 10!
HomA o 22x10? - 6.9x 10! ND 1.2x 107 ND 1.2x10° 43x10™M
13¢d 6.5x 1077 - >1x 107 ND ¢ ND ¢ ¢
12ImQpy 5.1x10% - 7.6 x 10! 1.1x10°% 4.8x10° ND 4.8x10° 1.7x 101
1238n 4.6x10* - 8.0x 10% 1.1x10°% ¢ ND ¢ ¢
1265n 2.6x 10 - ~1x10° 1.1x10°% 2.6x10* ND 2.6x10* 9.4x101°
1258b 1.4 - 2.7 7.6x 10 2.1x 10" 1000 (1) ¢ ¢
1268, 3.6x 10 - 34x10? ND ¢ 1000 (1) ¢ ¢
126mG 2.6x 107 - 3.6x10° ND ¢ 1000 (1) ¢ ¢
125mTe 3.4x 10" - 1.6 x 10! 7.6x 107 2.6x 107" ND 2.6x 10" ¢
127Te 1.5x 10* - 1.1x103 ND ¢ ND ¢ ¢
12/mTe 1.5x 10 - 3.0x 10! 23x107 4.5x 10" ND 45x 10" ¢
1291 1.2x 107 - 1.7 x 107 23x1071° 1.2x 107 ND 1.2x10° 43x10™M
134Cs 3.0x 10 - 2.1 3.4x10% 2.4x10? 60 (2) ¢ ¢
135Cs - 5.8x10° 3x10° 3.8x 107 53x10° 60 (2) 5.8x10° 2.1x 10"
¥Cs 2.9 - 30.2 7.6x 10 2.4 60 (2) ¢ ¢
137mB, 2.7 - 49x10° ND ¢ ¢ ¢ ¢
142Ce 1.6x 108 - >1x 10 ND 1.6x 108 1000 (1) 1.6x10* 5.8x 10
44Ce 1.7 x 10! - 7.8x 10! 3.8x10% 2.2x 103 1000 (1) ¢ ¢
144py 1.7 x 10! - 3.3x10% ND ¢ 1000 (1) ¢ ¢
144py 2.0x 10" - 3.2x10% ND ¢ 1000 (1) ¢ ¢
144Nd 8.3x 10" - ~5x 10" 2.7x 107 8.3x 10" 1000 (1) ¢ ¢
47Pm 42x10! - 2.5 7.6 x 107 53 1000 (1) ¢ ¢
479 m 3.4x10° - 1.1x 10" 23x107 3.4x10° 1000 (1) 3.4x107 1.2x 10
@ Half-life of isotopic
b Distribution coefficient [reference in parentheses: (1) Ref. 24, Onishi (1981), (2) Ref. 18, Prout (1959)]
¢ Concentration is less than 107° Ci/gal
d

ND = data not available
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Table 3.4-4  Radionuclide Concentrations at Postulated Leak and at Groundwater Outcrop
(Continued)
Initial Conc. at Leak Concentration Reduced
Exposure Congc. after by
Conc. 7.4 yr of decay ITon by
Sludge Supernate tip? Guide (Ci/gal) Exchange Dispersion
Isotope (Ci/gal) (Ci/gal) (yr) (Ci/gal) Kq° (Ci/gal) (Ci/gal)
148Sm 9.8x 10" - 1.2x 10" ND 9.8x 10" 1000 (1) 9.8x 107" ¢
149§ m 3.0x 10" - ~4x 107 ND 3.0x 10" 1000 (1) | 3.0x 10 ¢
51Sm 42x10" - 9.3x 10! 1.5x10° 4.0x 10" 1000 (1) ¢ ¢
152Ey 6.4x107 - 1.3x 10! 3.0x 107 46x10? 1000 (1) ¢ ¢
154Eu 1.1 - 1.6 x 10! 7.6 x 10° 8.0x 10" 1000 (1) ¢ ¢
155Eu 8.2x 10 - 1.8 7.6 x 107 4.6x 107 1000 (1) ¢ ¢
10Th 1.9x 107 - 2.0x 107! 1.1x10°% ¢ 1000 (1) ¢ ¢
2084 1.8x10° - 59x10° ND ¢ ND ¢ ¢
By 1.5x 10* - 73.6 1.1x 107 1.4x 10 100 (1) ¢ ¢
3y 1.7x10% - 1.6x 10° 1.1x 107 1.7x 10 100 (1) 1.7x 10% 6.1x 101
By 4.6x10* - 25x10° 1.1x 107 4.6x10* 100 (1) 4.6x10* 1.7 x 10°
2y 1.5x10° - 7.1x 108 1.1x 107 1.5x10° 100 (1) 1.5x 10° 54x 107"
By 3.3x10° - 2.4x 107 1.1x 107 3.3x10% 100 (1) 3.3x 107 1.2x 1010
B8y 8.5x 10 - 45x10° 1.1x 107 8.5x 10 100 (1) 8.5x 10 3.1x10M
ZNp 3.0x 10! - 2.5x10° 1.1x10°% ¢ 0 (1) ¢ ¢
ZNp 1.5x10% - 2.1x10° 1.1x10°% 1.5x 10° 0 (1) 1.5x10° 54x 10"
zepy 1.1x10* - 2.9 1.1x10° 1.8x 10° 20 (2) ¢ ¢
28py 1.3 - 8.6x 10! 1.9x 108 1.2 20 (2) 1.6x 10* 5.8x 107
29py 1.2x 107 - 24.4x 10° 1.9x10°® 1.2x 107 20 (2) 1.2x 107 43x10°%
240py 7.7x 107 - 65.8 x 10? 1.9x 108 7.7x 103 20 (2) 6.8x 107 24x10%
241py 1.5 - 13.2 7.6 x 107 1.0 20 (2) ¢ ¢
2py 1.1x10% - 3.8x10° 1.9x 10°® 1.1x10° 20 (2) 1.1x10° 4.0x 10!
2 Am 1.9x 102 - 45.8x 10! 1.5x10°% 1.9x 107 10* (2) ¢ ¢
22Am 2.5x10° - 1.8x10° 3.8x 107 ¢ 10* (2) ¢ ¢
24mAm 2.5x10% - 15.2x 10! 1.5x10°% 2.4x 107 10* (2) ¢ ¢
MAm 9.9x 10 - 74x10° 1.5x 10 9.9x10° 104 (2) c c
#2Cm 6.0x10° - 45x 10" 7.6 x 10° 5.8x 1071 ND 5.8x 10710 2.1x 107"
23Cm 9.5x10° - 3.2x 10! 1.9x 10°® 8.1x10° ND 8.1x10° 3.7x 10
24Cm 2.8x 10™ - 17.6 2.7x10% 2.1x10%* ND 2.1x 10 9.7x 1010
25Cm 1.1x10% - 9.3x10° 1.5x10°® 1.1x10% ND 11x10* 5.1x10M
246Cm 9.1x 10710 - 55x10° 1.5x10°® 9.1x 10" ND 9.1x 1010 3.3x 107
27Cm 1.1x 10" - 1.6 x 107 1.5x10°® 1.1x 107 ND 1.1x 101 ¢
28Cm 1.2x 10 - 47x10° 1.5x10°® 1.2x 107 ND 1.2x 101 ¢
SICr 1.5x 10" - 7.6 x 107 7.6 x 10°¢ ¢ 0 () ¢ ¢
$Sr 9.1x10% - 1.4x 107! 1.1x10? ¢ 6 (2) ¢ ¢
oy 1.7x10°® - 1.6x 10! 1.1x 107 ¢ ND ¢ ¢
9SmNb 2.2x 107 - 1.0x 102 ND ¢ ND ¢ ¢
1G3RY 2.0x 10! - 1.1x 107! 3.8x10% ¢ 100 (2) ¢ ¢
163mRh 2.0x 10! - 1.1x10* ND ¢ ND ¢ ¢
15mCd 1.6x 102 - 1.2x 107! ND ¢ ND ¢ ¢
124Sb 1.2x 10710 - 1.7x 10" 7.6 x 10° ¢ 1000 (1) ¢ ¢
@ Half-life of isotopic
b

c
d

Distribution coefficient [reference in parentheses:

Concentration is less than 10-'3 Ci/gal
ND = data not available

(1) Ref. 24, Onishi (1981), (2) Ref. 18 Prout (1959)]
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Table 3.4-4 Radionuclide Concentrations at Postulated Leak and at Groundwater
Outcrop (Continued)

Initial Conc. at Leak Concentration Reduced
Exposure Conc. after by
Conc. 7.4 yr of decay ITon by
Sludge Supernate tip? Guide (Ci/gal) Exchange Dispersion
Isotope (Ci/gal) (Ci/gal) (yr) (Ci/gal) Kq° (Ci/gal) (Ci/gal)
1iCe 6.2x 10" - 9.0x 107 3.8x10°® ¢ 1000 (1) ¢ ¢
12Te 3.8x 10" - 1.3x10* ND ¢ ND ¢ ¢
129mTe 59x 10" - 9.3x 107 ND ¢ ND ¢ ¢
148pm 1.2x 10" - 1.5x 107 ND ¢ 1000 (1) ¢ ¢
148mp 1.7 x 1072 - 1.2 x 10! ND ¢ 1000 (1) ¢ ¢
Z7py 7.8x 10" - 1.3x 10" ND ¢ 20 (2) ¢ ¢
2 Half-life of isotopic
b

o

Distribution coefficient [reference in parentheses: (1) Ref. 24, Onishi (1981), (2) Ref. 18, Prout (1959)]

Concentration is less than 1013 Ci/gal
ND = data not available
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Table 3.4-5  Sedimentary Stratigraphy at the DWPF Site Based on Subsurface Exploration
Stratum - Soil Stratum Stratum Geologic Soil
old nomenclature Designati Thickne Elevation Characterization
(new nomenclature) on ss (ft) Range (ft,
msl)

Hawthorne Formation S1 0+ surficial poorly sorted, sandy with
(Altamaha Fm. - also unit above frequent lenses of gravel,
Upland Unit) 275 + pebbly sand; and oxidized,

massive clay.
Barnwell Formation S2a 80 + 275 to 195 interbedded, clayey sand and
(Tobacco Road Fm., S2b sand with thin layers and
Irwinton Sand Mbir., lenses of clay or silt.
Tan Clay Mbr.)
Undifferentiated C2 5t020 215 to 195 stiff, silty clay.
(Tan Clay Mbr. -
included above)
McBean Formation S3a 70 195 £ to alternating layers of sand,
(Tinker Fm. and Santee S3b 125 + some clay and sand with
Limestone) S3c trace clay or silt;

discontinuous calcareous

sand in lower strata.
Undifferentiated M1 10 £ 140 to 130 discontinuous, compact silt.
(Green Clay)
Congaree Formation S4 100 + 125 to 30 continuous, dense sand and

(same)

Ellenton Formation

silty sand.

dense, sandy to clayey silt
with some silty sand.
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Table 3.4-6  Summary of Borehole Groutings
Amount Calculated
Boring Grouted Borehole Volume of of Grout Grout
Number Depth, ft Diameter, Borehole, Cement Takeb= Take
in. ft3 Used 2.12x E, Ratio, F/D
Bags ft?
1€ 301.5 5 41 NA
2P4 301.0 8 79 150 318 4.0
3p 115.5 6 22 110 233 10.6
4p 177.9 6 33 105 223 6.7
5¢ 301.5 5 41 700 1484 36
6P 91.5 6 17 28 59 35
7¢ 301.5 5 41 103 218 53
8P 210.5 8 55 NA
9P 290.5 8 76 NA
10 300.8 5 41 71 151 3.7
11 300.4 5¢ 41 NA
12¢ 300.8 5¢ 41 74 157 3.8
13P 300.5 8 79 208 441 5.6
14 301.5 5 41 NA
15P° 158.5 5 30 NA
16 300.5 6° 59 NA
17 101.5 4¢ 9 8 17 1.9
18 150.9 4¢ 13 55 117 9.0
20AP 306.5 8 80 130 276 34
21P 200.0 8 68 65 138 2.0
21BP 200.0 6° 39 18 38 1.0
22 191.2 6° 38 25 53 1.4
23 190.5 6° 37 58 123 33
24 301.5 4 26 46 98 3.8
25 180.2 4¢ 16 54 114 7.1
29 190.3 4¢ 17 20 42 2.5
30 126.5 4 11 8 17 1.5
31 190.6 4¢ 17 55 117 6.9
32 180.1 4¢ 16 15 32 2.0
33 180.3 6° 35 26 55 1.6
34 126.5 4¢ 11 30 64 5.8
35 111.5 4¢ 10 25 53 5.3
37 180.2 4 16 15 32 2.0
38 301.0 8 95 153 324 34
39 180.3 4¢ 16 20 42 2.6
41 190.3 4¢ 17 25 53 3.1
42 190.3 4¢ 17 60 127 7.5
43 125.1 4¢ 11 NA
44 111.5 6°¢ 22 16 34 1.5
45 190.9 4¢ 17 24 51 3.0
46 151.5 4¢ 13 11 23 1.8
47 190.8 4 17 52 110 6.5
48 301.5 6 59 90 191 3.2
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Table 3.4-6  Summary of Borehole Groutings (Continued)
Amount Calculated
Boring Grouted Borehole Volume of of Grout Grout
Number Depth, ft Diameter, Borehole, Cement Takeb= Take
in. ft? Used 2.12x E, Ratio, F/D
Bags ft3
49¢ 200.3 6° 39 122 259 6.6
50¢ 3015 6° 59 NA
51 126.5 4¢ 11 8 17 1.5
53 126.5 4 11 7 15 1.4
54 200.5 4¢ 18 18 38 2.1
55 180.3 6° 35 60 127 3.6
56 180.4 4¢ 16 52 110 6.9
57 190.8 4¢ 17 32 68 4.0
58 190.3 4e 17 20 42 25
62 200.8 4e 17 18 38 22
62AP 107.0 6 20 19 40 2.0
63¢ 3015 6 59 57 121 2.0
64¢ 201.5 8 70 NA
66 200.8 4¢ 17 13 28 1.6
67 126.5 4 11 25 53 4.8
68 126.5 4 11 NA
69 180.5 6 35 NA
70 126.5 4¢ 11 8 17 1.5
72 301.5 4¢ 26 NA
73¢ 200.8 6 39 NA
74¢ 101.5 6° 20 20 42 2.0
75¢ 99.5 6° 20 20 42 2.0
77 180.5 4¢ 16 17 36 2.3
78 180.4 4¢ 16 22 47 2.9
80 180.4 4 16 28 59 37
81 180.5 4 16 45 95 5.9
83 150.5 4 13 26 55 4.2
84 151.3 4¢ 13 11 23 1.8
85 150.2 4 13 30 64 4.9
86L1 150.9 10 72 94 199 2.8
86L1A 300.0 10 144 85 180 1.3
86L2 300.9 10 144 90 191 1.3
87 76.5 4e 7 12 25 3.6
89 180.5 4e 16 NA
90P 301.5 6° 59 45 95 1.6
90L2P 301.5 6? 59 45 95 1.6
92 180.4 42 16 25 53 33
93 76.5 42 7 4 8 1.1
96 76.5 42 7 6 13 1.9
98 180.3 42 16 NA
101°¢ 76.5 42 7 4 8 1.1
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Table 3.4-6  Summary of Borehole Groutings (Continued)
Amount Calculated
Boring Grouted Borehole Volume of of Grout Grout
Number Depth, ft Diameter, Borehole, Cement Takeb= Take
in. ft? Used 2.12x E, Ratio, F/D
Bags ft?
158 126.5 42 11 8 17 1.5
159 201.5 42 18 15 32 1.8
160 150.9 4 13 25 53 4.1
a Summary includes only borings extending into McBean Formation
b Calculated grout take is based on the typical neat cement grout mix used to grout boreholes.

€

Boring is outside of limits shown on Figure 3.4-20.

Where a piezometer was installed, the “Volume of Borehole” is the volume of the annular space
between the riser pipe borehole.

Diameter of borehole is not denoted on field log and has been assumed based on type of boring.

Note: NA = not available
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Table 3.4-7 Summary of Borings with Indications of Voids or Leached Zones:
Approximate Approximate
Elevation of Approximate Elevation of
Boring Approximate Loose Zones Approximate Low Blow Counts Elevation of Approximate Elevation Calcareous
Number Elevation of Noted During Elevation of Observed During Loss of Drilling of Samples with Notes on Field Grout Take
Rod Drops Drilling Blow Count Drilling, in. Fluid Reaction to HCL® Logs Ratio
3p None noted None noted 170 3/18 None noted / None noted 10.6
4p None noted None noted - - None noted / None noted 6.7
6P None noted 199 to 190 - - None noted / None noted 3.5
8P None noted None noted - - None noted / 162 to 156 Not
13P None noted None noted - - None noted / 160 to 145 5.6
18 None noted None noted 151 to 145 0/18 None noted / None noted 9.0
20 164 to 162 None noted - - None noted / None noted 3.4
21P None noted None noted 172 0/12 None noted None None noted 2.0
23 145 to 141 None noted 147 0/18 None noted / None noted 33
24 153 to 145° None noted - - None noted None 163 to 158 3.8
25 167 to 163 None noted 169 8/12 150 / None noted 7.1
148 to 143 149 8/12
31 None noted 175 to 140 170 to 164 0/18 None noted / None noted 6.9
149 0/18
32 None noted None noted 168 5/12 None noted / None noted 2.0
34 None noted None noted - - None noted / None noted 5.8
37 None noted None noted 183 4/12 None noted / None noted 2.0
38 None noted 190 to 170 - - None noted / None noted 34
148 to 140
42 None noted None noted - - None noted / None noted 7.5
47 None noted None noted 147 0/18 None noted / 145 6.5
48P None noted None noted 157 4/12 None noted / 153 32
149 0/18
54 None noted None noted - - None noted / 161 to 151 2.1
56 None noted 141 to 135 136 2.18 None noted / None noted 6.9
62 None noted None noted - - None noted 139 164 to 123 2.2
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Table 3.4-7 Summary of Borings with Indications of Voids or Leached Zones: (Continued)

Approximate Approximate Approximate
Elevation of Approximate Elevation of Elevation of
Approximate ~ Loose Zones Approximate Low Blow Counts Elevation of Samples with Calcareous
Boring Elevation of Noted During Elevation of Observed During Loss of Drilling Reaction to Notes on Field Grout Take
Number Rod Drops Drilling Blow Count Drilling, in. Fluid HCL® Logs Ratio
64 None noted None noted 152 to 145 0/18 None noted / 163 to 158 Not
72 None noted None noted 149 0/18 None noted / 145 Not
80 None noted None noted 141 7/12 None noted / None noted 3.7
81 None noted None noted - - None noted / None noted 5.9
83 None noted None noted 164 7/12 None noted None 160 to 158 4.2
84 None noted None noted - - None noted 162 to 157 1.8
135t0 126 135 to 129

86L1 143 to 138 None noted - - None noted None None noted 2.8

8612 168 to 162° None noted - - None noted / None noted 1.3
89 None noted None noted - - None noted / 153 Not
92 None noted None noted 144 t0 138 0/18 None noted / None noted 33
159 169 to 165 None noted 174 4/12 None noted / 155to0 150 1.8

158 6/12
a All elevations are in feet.
b /indicates samples were not available to MRJD for testing with dilute HCL.

C

Field log notes that driller dropped rocks in noted interval.
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Table 3.4-8 Summary of Static and Dynamic Laboratory Testing Program2
Static Triaxial Consolidated Sands Compaction Resonant Cyclic Triaxial Cyclic Torsional
Test CUP Test Test Column Test Test Test
Undisturbed Compacted
Silts and Sands
Clays
(BH-3, ST-2 ('BH-6, ST-4 ('BH-8612, ST- (WBH-86L.2, ST-18 ©s%MSample 2 ®Sample 1 ()BH-38, ST-2 (®)BH-38, ST-2 (BH-81, ST-3
164 -173 1365’ -1395° 1 416’-419 400’-500’ 300°-400° 515°-54% 515 -545 565°-585
1450°-147 5
®)BH-3, ST-5 (UBH-6, ST-6 (UBH-10, ST-2 (VBH-86L.2, ST-19 ™ Sample 2 MSample 1 ()BH-38, ST-3 ()BH-47, ST-1 (UBH-90, ST-1
839°-848’ 2213-2216° 400°-425 434°-438 400°-500" 300°-400° 715°-535° 315°-335 370°-390°
(BH-6, ST-5 (BH-6A, ST-3 (WBH-20, ST-1 (UBH-86L.2, ST-23 (MBlend 1 MSample 2 ()BH-38, ST-5 ()BH-38, ST-2 (BH-9012, ST-2
1419°-142 8 720°-750° 526’ 507°-509° BH-24 400°-500° 910°-940° 715 -535 502°-540°
100°-200°
()BH-6A, ST-2 (UBH-7, ST-1 (BH-38, ST-2 (UBH-86L2, ST-24 (MBlend 2 lN”Sample 3 ()BH-47, ST-1 ()BH-47, ST-3 (I-M)Blend 4
569°-578 850°-880’ 521’-52% 536°-537 BH-24 500°-600" 315°-335 515-535 BH-24
200°-300" 400°-500"
GBH-8,ST-14  (BH-10,ST-6  ©®BH-38, ST-5 (UBH-86L2, ST-46 MBlend 3 MBlend 1 ()BH-47, ST-2 ()BH-55, ST-3
1459°-146 8” 815°-845° 917°-919 1096’ -109 8” BH-24 BH-24 465°-485 565°-585°
300°-400° 100°-200°
®BH-10, ST-2 (WBH-20, 0-2 (BH-38, P-1 (BH-86L2, ST-49 (MBlend 4 (MBlend 2 ()BH-55, ST-3 ®BH-81, ST-2
408 -418 114 6 2465 -246 7T 1156’ -1158 BH-24 BH-24 565°-585° 465 -485
400°-500" 200°-300"
®BH-10, ST-5 (UBH-47, ST-5 (UBH-47, ST-4 (UBH-86L2, ST-51 (MBlend 5 (MBJend 3 ()BH-81, ST-2
729°-743 765 -785° 565 1196’ -1198” BH-24 BH-24 465°-485
500°-600° 300°-400°
()BH-38, ST-1 (UBH-55, ST-* (BH-47, ST-6 (UBH-86L.2, ST-52 (MBlend 6 (MBlend 4 G-MBH-22, ST-1
368 -378 1416 -1442° 917 1215°-1217 BH-24 BH-24 570°-590°
600’ -680" 400°-500°
()BH-38, ST-6 (WBH-90, ST-4 (WBH-55, ST-6 (WBH-86L.2, ST-53 MBlend 5 (-MBH-55, ST-1
1084’ -1094° 68 0” 1257 12477 -1250° BH-24 265-285
500-600°
()BH-47, ST-4 (VBH-63, P-1 (UBH-86L2, ST-58 MBlend 6 “-MBH.90, ST-2
568 -578 470°-500" 1372°-1375 BH-24 465°-485
60.0 - 68.0
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Table 3.4-8 Summary of Static and Dynamic Laboratory Testing Program® (Continued)

Consolidated Sands Compacted Compaction Resonant Cyclic Triaxial Cyclic Torsional Test
Static Triaxial Test Sands Test Column Test Test
Test CU® Undisturbed
Silts and Clays
®BH-47, ST-6 (DBH-63, ST-2 (UBH-88612, P-1 MBlend 6
919°-929° 1220°-1250° 1421°-1423 BH-24
570°-590°
®BH-63, PT (BH-8612, ST- BH-8612, P-2 *"BH-55,
486°-492’ 10 1446’ - 1449 ST-1
252°-254 265 -285"
BH-8612, (VBH-8612, ST- (UBH-90, ST-1 WBH-90,
ST-17 383’ - 11 387 ST-2
394 275 -278 4657 -485°
(BH-63, ST-2 (BH-8612, ST- (BH-90, ST-5
1210 - 1242’ 13 832
316°-318"
®BH-9012, (UBH-8612, ST- (UBH-90, P-1
ST-1 15 1995
354°-364" 356°-358"
®BH-90, ST-3
518 -528
(-95%MBlend 4
BH-24
400°-500"

(-100%M)Blend
4

BH-24
400’ -500°

Table indicates boring, sample number, and depth. Numbers in parentheses indicate number of tests conducted on a particular sample.

Letters in parentheses for compaction tests indicate whether a standard Proctor (S) or modified Proctor (M) test was performed.

CU denotes consolidated-undrained test with pore pressure measurements.
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Table 3.4-9 Summary of Generalized Static Soil Properties
Initial
Unit Average Water Effective Shear Strength Properties Consolidation Parameters Void
Stratum Weight, pcf Content, % Friction Angle, Cohesion, ¢ psf Compression Index, Cc Swelling Index, Ce Ratio,
N(b €o
S1 130 21 34 0 0.009 0.56
S2a 128 22 34 0 0.008 0.59
S2b 128 22 34 0 0.009 0.59
C2 106 53 31 0 0.85 0.070 1.4
53A 127 23 34 0 0.009 0.62
(Elev. 180-200)
53a 121 30 34 0 0.015 0.80
(Elev. 130-180)
53b 126 24 34 0 0.009 0.64
53¢ 125 25 34 0 0.009 0.67
M1 120 31 34 0 Considered
S4 125 25 40 0 Considered
Imcompressible

3.10-25



WSRC-SA-6

3.10-26

Rev 37
November 2018
Table 3.4-10 Summary of CU Triaxial Test Results
Boring, Sample,
and Depth Soil Description ¢, degrees ¢, ksf
BH-3, ST-2 Very stiff sandy silt 29.5 0.5
16.4°-17.3
BH-3, ST-5 Stiff sandy silt 34.4 0
83.9’-84.8°
BH-6, ST-5 Dense silty fine to medium sand 38.8 0
141.9’ - 142.8’
BH-6A, ST-2 Medium dense clayey fine to medium sand 33.9 0
56.9°-57.8
BH-8, ST-14 Dense to very dense silty fine to medium 37.0 0
145.9’ - 146.8° sand
BH-10, ST-2 Medium dense clayey fine to medium sand 32.2 0.2
40.8° -41.8
BH-10, ST-5 Medium dense clayey fine to medium sand 339 0
72.9°-74.3’
BH-24, Blend 4 Compacted fine to medium sand, trace to 353 0
40.0’ - 50.0° some clay®
BH-24, Blend 4 Compacted fine to medium sand, trace to 39.6 0
40.0’ - 50.0° some clay®
BH-38, ST-1 Loose to medium dense fine to medium 33.7 0
36.8° -37.8’ sand, some silt and clay
BH-38, ST-6 Very loose to loose fine to medium sand, 25.6 0
1088.4° - 109.4° trace to clay
BH-47, ST-4 Loose fine to medium sand, trace of silt to 29.5 0
56.8° -57.8’ silty fine to medium sand
BH-47, ST-6 Loose to medium dense clayey fine to 31.7 0
91.9°-92.9 medium sand
BH-63, P-1 Loose fine to coarse clayey sand 35.7 0
48.6* -49.2
BH-63, ST-2 Medium dense fine to medium clayey sand 33.7 0
1229’ -124.2°
BH-86L.2, ST-17 Loose fine to medium sand, some clay 30.6 0
38.3°-39.4°
BH-90L2, ST-1 Medium dense fine to medium sand, trace 32.6 0
354 -36.4 of clay
BH-90, ST-3 Loose to medium dense fine to medium 34.1 0
51.8°-52.8° sand, trace of clay and mica
a Compacted to 95% modified Proctor effort at optimum water content.
b

Compacted to 100% modified Proctor effort at optimum water content.
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Table 3.4-11 Summary of Consolidation Test Results for Silts and Clays

Boring, Sample Compressi Recompress Void

and Depth Soil Description on ion Ratio,

Index, Cc Index, Cer €o

BH-6, ST-4 Very stiff sandy silt 0.22 0.02 0.794
136.5 - 139.5°
BH-6, ST-6 Very stiff to hard silt 0.14 0.03 0.587
221.3° - 221.6°
BH-6A, ST-3 Soft clay, trace of sand 0.76 0.07 1.281
72.0° - 75.0°
BH-7, ST-1 Medium stiff clay 1.07 0.12 1.474
85.0” - 88.0°
BH-10, ST-6 Medium stiff clayey 0.69 0.07 0.985
81.5° -84.5° silt
BH-20, 0-2 Stiff to very stiff 0.28 0.01 1.007
114.6° clayey silt
BH-47, ST-5 Stiff sandy clay 1.83 0.11 1.553
76.5° - 78.5°
BH-55, ST-8 Very stiff sandy clay 0.12 0.03 0.589
143.6° - 144.2°
BH-90, ST-4 Medium stiff silty clay 0.91 0.05 1.983
68.0°
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Table 3.4-12 Laboratory Determination of Shear Moduli of Backfill at Large Strains

Type of Test Shear Strain, y % Shear Modulus G, psi
Torsional shear 1.7x 107 14,100
Torsional shear 6.2 x 102 7,700
Triaxial compression 9.3 x 10! 2,500
Triaxial compression 2.9 1,900

Note: BH-24, 40-50 ft, blend 4, o= 1 kg/cm?.
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Table 3.4-13 Allowable Bearing Capacities of Mat Foundations for Category I
Structures®
Assumed Allowable Bearing
Mat Capacity (tsf)
Structure Mat Embedment, Thickness, Case Case 2¢
Dimensions, ft ft Ib
ft
Vitrification 117 x 360 13 10 20 15
Building (S-
221)
Glass Waste 90 x 202 23 3.5 17 10
Storage
Building #1
(S-250)
Sand Filter 160 x 190 19 2.0 20 6
Building
(S-294)

allowable bearing capacities relate to ultimate shear failure and do not consider

settlements. The subsoils will respond elastically to applied loading less that these
allowable values. Actual bearing values for these structures should be selected based
on tolerated estimated settlements.

Case 1 assumes that mat foundations are completely rigid.

¢ Case 2 assumes a relative foundation rigidity based on mat thickness.
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Table 3.4-14 Soil Design Parameters
Stratum S1
Parameter Natural Soils Compacted Fill *°
Allowable bearing capacity (for spread
footing and design of roads and railroads 3 tsf 3 tsf
Effective unit weights
Above water table 127 pef 130 pef
Below water table? 68 pcf 71 pef
Angle of internal friction (¢) 34° 34°
Earth pressure coefficients ®f
Coefficient of active earth pressure (Ka) 0.28 0.28
Coefficient of earth pressure at rest 0.44 0.44
(Ko)
Coefficient of passive earth pressure 3.50 3.50
(Ke)
Equivalent fluid pressure®
Flexible walls: Above water table 36 psf/ft 36 psf/ft
Below water table 82 psf/ft 82 psf/ft
Rigid Walls: Above water table 60 psf/ft 60 psf/ft
Below water table 95 pst/ft 95 psf/ft
Coefficient of vertical subgrade reaction 200 pci 200 pci
(ks)
Excavation slopes (maximum) 1 vert. ON
1 horiz. (1:1) 1:1
Permanent slopes (maximum) 1 vert. ON
1 horiz. (1:2) 1:2
Frost penetration 5in. 5in.
a Minimum compacted fill density shall be 95% of ASTM D1557 (modified Proctor).
b Compacted fills are limited to onsite sandy soils or SRS designated borrow area sandy soils free of
rubble and organic material, and with a maximum of 50% by dry weight passing the No. 200 sieve.
c For footing widths (B) of less than 3 ft allowable bearing pressure is 1/3 x 8 x 3 tsf.
d Design water levels
Average water table - elevation 245
Maximum water table - elevation 265
e The lateral pressure due to a surcharge loading over a large area adjacent to the permanent wall =
surcharge load x K.
f Major compaction equipment should be kept at least 10 ft from permanent wall.
g Structural walls restrained at the top and bottom are “rigid”. Walls restrained at the bottom and free at

the top are “flexible.”
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Table 3.4-15 Summary of Gmax Values for Category 1 Structures
Zone ElevationR Unit Maximum Shear Modulus, tsf
ange, ft Wlfé%ht Poisson’s Free Vitrification Sand Filter Fan House GWSB #1
Ratio Field Center SW Corner Center Mid N Center NE Center Mid N Center of
Wall Corner Wall Exhaust
1 Backfill* 0. 0.130 0.35 (a) (b) (© (d) (© ® (2 (h) ® @
3,000
2 °-260  0.127 0.35 6,700 ¢ c c c ¢ c ¢
2604-245 0.127 0.35 5,200 7,400 5,800 4,900 5,200 6,500 5,700 6,600 7,800 9,200
245-235 0.129 0.49 4,400 6,000 4,900 4,200 4,300 5,100 4,700 5,100 5,600 6,100
5 235-200 0.129 0.49 3,600 4,700 4,100 3,500 3,500 4,100 3,900 4,100 4,400 4,700
6 200-175 0.125 0.48 4,300 5,000 4,500 4,200 4,300 4,600 4,500 4,700 4,900 5,000
7 175-135 0.125 0.48 5,200 5,600 5,400 5,100 5,200 5,300 5,300 5,500 5,500 5,600
8 135-30 0.125 0.48 9,300 9,700 9,500 9,200 9,300 9.400 9.400 9.700 9.800 9,800
9 30--30 0.125 0.48 11,800 11,800 11,800 11,800 11,800 11,800 11,800 11,800 11,800 11,800
Elevation range for backfill under walls of Glass Waste Storage Building #1 =280 to 267.
b Elevation corresponds to bottom of foundation as follows:
Column a b,c f,g h, j
Elevation 275 270 271 261 267
Between the bottom of the foundation and elevation 260, Gmax must be computed.
d For columns d and e, this elevation should be 254.
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Table 3.4-16 Strong Motion Accelerograms Used for Analysis of Liquefaction Potential
Richter Site Geology Epicentral Distance, km Peak Horizontal
Earthquake Instrument Location
Magnitude, M Acceleration, g
El Centro 6.7 Imperial Valley Alluvium 58 0.348
May 18, 1940 Irrigation District deeper than
32.79N, 115.55W 1,000 ft
San Fernando 6.6 CIT Millikan Library Approx. 1,000 38 0.202
February 9, 1971 34.14N, 118.13W ft of alluvium
Seattle, WA 7.1 Olympia Highway Test Deep alluvium 21 0.280
April 13, 1949 Laboratory

47.03N, 122.90
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Figure 3.4-4 Plan View for Piezometric and Monitoring Wells

3.11-6



WSRC-SA-6

Rev 37

November 2018

:MIOS u0IiRI0IAX ] 6861 PASIASY

—

Cur\gf

I

T
I

€13 'S33HYOA
€861 INOJNQ

Contours

iezometric

3.11-7

6/61 JNE ONIY I 3HIONT ONILINSNOD VINOIOJJY 'a
.. s €861 ONI WWNOILVN 131HD38
& 7 S3IINTIIIY
7Y : el 0 1 . :\r 5 . v = T
N ENGH B adiadi Wolh \ g ==
3HVYMVY13Q ‘NOLONINTIM V3HV H -9 1°
Q3LVHOJHOONI &S e i :
ANVAINOD 2 SHNOW3N 2P LNOd NP ('3 . . o | ,
P L i
804 Q34VdIed Y , R .
A J g \\
) ﬁ < ; i 0se N
SHNOLNOD OJIH13W0Z31d | i _, =5 '
92 3INOZ b )
ALITNOV HDNISSIO0Hd ILSVM ISN3I43a L1/ s3x08 nos: N\E / R
31IS H3AIH HVNNVAVS o iy awd ;
lad . 3
S a3y : : S
. 35 000EZN
. <
335 009 ooy 002 0 00z - &
1334005 . _! y N >3 0Se
3vos v osmd L 21 -Hg| K
& |~
ANINAVIYL 3:SvMm v]v}@ H % ANIALYIYL d-
WIWEHD Chv Eatvm k| W) 30YM3S
(G3HOLINOW 38 O1 NOILYWHO3 J oy 8o A N
S3LVOIONI TOBWAS 3AIS38 INVN) 068 ~ T T~ 5 T~
7134 ONIHOLINOW 03S0dOHd O ~ L ™4 - . K
\ 4 =8 N -
\ \ /
SHIHLO AB Q3VIWVLSNI DIt im0 ., ' ] \ ' /
[ sovtols 0333 9300 r sl 9 < \ J
VINO044Y.Q A8 AITIVASNI 431300731 &, i i sl M wouvisans auvownodis ind
1 [r’ . »QZ( ABYWitid g
UNOINOD JIYIINOZINd e 3 43 s K e N
o 3 732 423 =snouf—27 NI wows \
QvorTIvy —il—it H L E Lid) N3 MoV H
30NId VIWY-S —f— i \ mm mrn P s i
HNOLNOD 3OVAYNS ONNOYD ONILSIXZ — — o5z — — o] g o AR 0007ZN
TNIDTT \
VLvQ 1961 '¥IEWIDIQ-HIBOLOO WOHH SHNOLNOD T j
FION X
I~ amn
~\, oNaMNe
P P Mt
@seona | \ __
1
T

~—

|___
000993

000593

[

000£93
4

Figure 3.4-5 Zone 7c, P



Rev 37

November 2018

WSRC-SA-6

a:0mj0S uoNEIoidx3 6861 PASIAGY 2 _w_ 1
3 . 8 1561 i213 'S J3HHOA
i© N L 1 €861 LNOJNJ
R ) HONI ONILTNSNOD VINO 10ddY A
T FRTER . €861 ONI IYNOILYN 13LHO38
AR . S30N3Y343Y
r ~,. \\ 14
: - h
yye ; ¢ - v Soalhls — , e o ]
N\ VRICORT HOAANE AL Yy e 3 i
- ,
3BYMVT3a NOLONIHIM S - . s
A IYHOAHOONI St
ANVJWOO 8 SHNOW3N 9P LNOd MP | 3 Tt e R
’ ), ' o H J
g e Ay 4 , .
- ~oam .
HO4 03HvdId ‘ PP el -r o
SHNOLINOD J1H13W0Z3id ’ T 4 ‘_
4 -
93NOZ - /
; y
ALITIOVY ONISS3J0Hd 31SVYM 3SN3I43a 7 K4 JF \\
" h
LIS H3IAIH HVNNVAVS { - Q /
\ > - Py > /
\ > N r ) —-0
9-p'¢ am3r] ~ s B ﬁ ! N |E2 i
@
3 “ A mm § 000EN
1334009 ooy o 0 00z \ 3 \ wavm T~ _ S l
o e : b s s ) '
N » e I
3W0s S emosns 1 i B " o R AR 1
_ - 0827 _aavuv3s sisem h adravauL e R
(Q3HOLINOW 38 O1 NOILYWHOS K¢ VDRI, ChVIHELVM, I ../..O Joymas | -o1g
SILVOIONI TOBNAS 30iS38 IWVN) e g = H . — pr—"
T13M ONIOLINOW 03S0dOld O ¢ ~=-06 ~. | B N !
S S N
S
SHIHLO AB QI TIVASM DIH1INOZ3K @)c.yssu 3 / i 4 ok ~ o /
X { 3omous o3 a0 | v a8z - N \ ¥
VINO0ddV.0 AB 031 V1SN ¥313W0Z3d €, g \ \ Gyl 3o S Y PR o 7
\ [ ] wouvisens L«:la%.wm Vs> e
HNOINOD JHLINOZINY = v < £ P ~ Y
1 = s N
i — - h 3 N . \
Qvou vy —t ) mm 1snwexd MOV
30N4 VIUY-S —A— i 3 i oy
KDO._,Z.OU 30V4HNS ANNOYD ONILSIX3 — —osz — — 000¥IN
TNITS
V1VQ 1861 'Y3ANIDIO-HIBOL0 WOHS SHNOLNOD <
- 1
i i
v
N
vIoy039 —\_
\
A\l
< 0003ZN
7
-1
T
N
S
m 0009ZN
:

3.4-6 Zone 6, Piezometric Contours

3.11-8

Figure



WSRC-SA-6

Rev 37

November 2018

3ieMIOG UOIEIOIDX 3 BYE I PBSIAGY

WIRIEP RO Al

FYYMVYI3A 'NOLONINIIM

Q31LYHOdHOONI

ANVJNOD B SHNOW3N 3P INOd 7P '1 '3

Quausavozsy

SHNOLNOD 214 L3W0Z3Id

S INOZ

ALINIOVd4 ONISS3O0Hd 3LSYM 3ISN343Q
3LS HIAIH HVNNVAVS

1334 009

L-y'¢ am3ig

00 002 o 002

ERLe)

(Q3HOLINOW 38 OL NOILYWYO4
S31VOIONI TOBWAS 301S38 INVN}
TI3M ONIHOLINOW 03S0dOHd O

SYIHLO AG GITVISN OH13W0Z31d (D) v6-oH

VINO0dd¥.Q AB 031 WWISNI ¥313n0Z3Id @) v He

HNOINOD D1I813N0Z3Id
QYOHTIVY —II—H ——
3JON3H VIHY-S —AF—rf—

HNOLNOD 3DV4HNS ANNOYO ONILSIXT — — osz — —

vISHO39

&2,

0
>
ES
3
2
3

coov93

-

1661
%

1813 'SIZHYOA
€861 "INOJNA

N s, N 661 ONI ONIY I INON T ONILINSNOD VINOT1OddY ‘A
. N e u_.. €361 ONIWYNOILVN 1311038
J s ! > SIONIYIATY
. . .- -
LT v - ] e 000ZLN
. b\ i’ o
& 8
o o
' Qv ’
[ {,” Y
J
; ¥ o
.
. SR '
" S~ 1
/ /
.T.I‘ ——ad H K
4 TN J
f— S3IXO8 NS AW 0 ¥ ’
ONY Lig, dnvg ) _ ﬁ /
P / > %
4 / =91
' B gz N
4 > s 000ELN
/ 25
>2
z

/
_ 097 _inamivaur 3isvm
.

L—-082 7T

Wvs 015 M 3

TPORNIHI ONV BII¥M

\

,
,
WQ(KOFwnwwwn-.g
Oy 11 08 ]

oNIaINg

NOIL¥OIILIA

\;J ASVHX3 NOILYTINGA

s 4

,
p
/l

/ ~A | .
o 1 ! ~,
i (RN %,
/ \ N
44 \ ~-0
| ~
NOIYLSENS ABYUNNOOIS 0
N GNY AtV 52

\or/ y

»ovis

—

3SNOH 31D 2
SU3LNOOYIH oMLY

000¥ZN

/
1
\
\
< 000SZN A
/
II\.—;I
e
N
N
S
/
{
% &
|
: o é ,
S \ \ ! ( NS, N
\ b ¥ S S
0003LN \ m o] N \ m v\ m 0009N
AN 3 m ' VIR NN m,
1 \ \ N
) g _ g g

Contours

-7 Zone 5, Piezometric

Figure 3.4

3.11-9



WSRC-SA-6

Rev 37

November 2018

2iemijus Lo

* 3 6861 pasinay

WV HENIO HO DTN AL

IHYMYTIA 'NOLONIWTIM
G31VHOJHOONI
10D 8 SHNOW3N 8P LNOd 7P | 3

HOJ Q3UVd3Yd

SHNOLNOD O1H13W0Z31d
¥ INOZ

ALIMIDV4 ONISS3O0Hd ILSVM ISN343a
31IS H3AIH HVNNVAVS

8-t'¢ undig

1334 009 oor 002 0 ikl

3OS

{Q3-HOLINOW 38 O1 NOILYNBOS
SILVDIGN YOBNAS 3AISIE 3WWYN}
T13IM ONIHOLINON G3S0d0Yd O
SYIHLO A8 0ITVISN JI8LIN0Z3IS e sssy

YINO0ddY.0 A8 03VVISNI HILIN023Id &y (g

HNOLNOD 1Y LINOZ3Id

avodivy —i—il ——

3ON3d VIHY-S —AH~—/F—

HNOLNOD 30OV4HNS ONNOYD ONILSIXI — —osz — —

V198039

006295

000994

4

-

Ly

1561

I

1819 S 3 JHUOA
€861 ANOJNQ

DN ONIHIZNIONT ONILTNSNOD VING 10ddV

L¥N 13110348
S3ION3Y343Y
M 0002LN
=1
3
)

~
YIHY 1S3L
WHNLINIEOY

i Wyl oisma L |

J
_-08 INIWLYIHL ILSYM
s TYOMEHD ONY B3ivm L |

\\l.caN\\)///

£
]

. 39VHOLS 0333 000

000€LN

ONY L3 YN8

3SNOM ALvD b
SYLYWICOVEH 0BV

~
NOLLYASENS ABVUNNOD3S o
ONY AuvNiNd
Ry I’y

»ovis <1 \
15TV4X3 NOUVELNIA )
+

I 000PLN

.
'\ \ ¢

Yo @ voene x \
; <
= < ,
\
-4 -
/l - pag s
———— ~
/ S--sT
- - -
—~-00§"~-" (A
b~
~ 07T
N N
3 .
\ ~_
Al
=)
- m m 000SZN
. g g g,
. S 8 g\

Figure 3.4-8 Zone 4, Piezometric Contours
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Figure 3.4-16 Site Location Plan
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Figure 3.4-17 Plan View of Borings
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COMPARISON OF SHALLOW STRATIGRAPHY NOMENCLATURE

OLD NOMENCLATURE NEW NOMENCLATURE STRATUM ON SOIL LOGS

HAWTHORNE FM ALTAMAHA FM S1
(UPLAND UNIT}
TOBACCO ROAD FM
S2a or S2b
BARNWELL FM
& IRWINTON SAND
g MEMBER
Mm@ —_—— .
> TANCLAY
UNDIFFERENTIATED a MEMBER C2
7
MCBEAN FM TINKERFM _ -~
e
_ S3a, S3b or S3¢
_ ~
.~ "SANTEE LIMESTONE
= UNDIFFERENTIATED GREEN CLAY (INFORMAL) M1
S4
CONGAREE FM CONGAREE FM

Figure 3.4-42 Stratigraphic Nomenclature
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Figure 3.4-49 Settlement Summary for S221
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Figure 3.4-66 Undrained Cyclic Test Results
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Figure 3.4-67 Cyclic Mobility Analysis
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Figure 3.4-68 Grouting Summary
3.11-70

13220, ov, o —
3 y
t ) ¢ \
$ i\ i)
WO ST M011DIS TR MImed 4 ! N W
an_ I 33 W I
e wipys -V Om}._l.’\ wmm Jﬁ‘. 8& A %
T ) % 4\ 1D P rﬂ J L &% "2 o A = _ 065 ¥s3
WANTVISH VIS0 d ¢ 1! oy 1 4 o - S g nuN,r
M — , saeer-d > .:n.Aﬁm acn ga
108 Naws Cemision ] ” a6} A ww@ d9j Tv9 8¢ o dCPED) v
1 b3 L Vi) P LT R N usd \a\vﬂ,
WIos TS ixg .@- k4 : D L, 5 b ‘vm.“l 3
dy. 6cTez  eerEm i 162D
ovow 15 722772720200 ,% A _"
oontv on  ~H——H—H— Syvoo021)
DA MUSIB — —— —— —— %. oY v ONINYV E)
Tl AN —e—p——— % +0 e Avmﬁm Jw@ ps — n.é\;.o,
aN3937 SOl how SN A
=9
o 30t e @ 7 ga = 2 T
“STRLMS 1 AKBIY) A 2uron rornen 1 v 00 £ I o D dut % 235 s AN
s usw OR300t e oo ot L &2 = ie AN,
e ewm an i U ol gendn el Tt
N L
SAEESEIEE  E eeenemene . 5 g, ot R
n!.nﬂ..ﬂ.".ﬁu" uss ISwronr 708 180N B0 OO M1 o o 141 3 e a3 Dliven e ! : Ean S€TEm 24
. o o s arme P LR ok | o g
580 Bea Bz OASIY 51 AMYIE SHN . * ! R
~REme R v v s e e RS _ o
UV ALLLA b NI 0t O 4 TOST SNV CRAONS TALIMNS WINTIW T WLV Terve £ .N i
acim DS wz v 3 .
— o odmromzmen ) X PO A I 3 1 5
A © By S P ERA 3
SV3¥Y Nois3a N , 1 i e 48y i ke




Rev 37

WSRC-SA-6
Nawvamber 2018

1

e 225 -3uv - _—— ,//{
_ il i 05 o S\ ~ T T ——
ERRCIR o Sin 19>0) WG JlraveD ! N
Sor i sec | / N
INOWISIC 3 NOLISNHOr -390 LN -¥3SINN w / / .

)

1

/

NOONIWIIM ~

EREZOCREN]
NI 0D § SUIOW3N 30 INOd D 1 3
¥3EY 5007 - 1NVie AN HYNRYAYC i

3C¥d  2iG¥M 3N

;AN ONITT

7 N NN

00C 9 3|
NCi.c2) R !

ON SMma §3n

d0hs
\CEL:]
INSHANQDI
nﬂuowﬁs_.mw, ~_.mw @n 6 mW
(€1 p1-H9 ©D 8- HY ZIHO T -
/ .

€De. -
—

,: CNISNOH  HOVHL

© "ONI “TVNOLLYN T1HI38 A8 : VR TV (g , 61

“yg-ST-€ Q3LV0 *8B/2-08 ¥3LLIT ONY ¥8-6-C X — “n ﬁco_ oD 21
Q3SIA3Y “€8-£2-9 GJLVO ‘090ZSM ~ON ONINV¥Q | | €-HO Y 8- HO L~ :o @

:1n0AVT 9NIOING 2 ' k 9-H9

TS e 3 _ 2~ g
*TVNOLLYN TILHO3S A8 ‘0SOTOLM °
:30VAANS ONNOY¥D ONILSIX3 1 $ ONIgINg 20..:.5.?»/» “H9
—_— - H
SN N _ / _ ...-xo K €= :o z- :wﬁmﬂ_‘wm.:w
oD D @D @wo Q)

—
(swnjoA etoysioq/exe) 1oib) /
oneteyer o (S1) / \

SYNOLNOD 3IVH¥AS ONAOYD ONILSIX - ——892——

_ (1334 21812) G31337°N) 1NO¥D WI0L - 8 /.

| ~
_ HIGWAN 30H LNOWD - {

|
|/
s .%| T.\.—\ J//_./ /,

NQisvocl 30K 1NO¥I aa

HOILYD01 370K 1NCUD A¥VHING - .mw.

1 T
z _ / / ~—
] 952
T m \7 Ul®|v /

o<

Figure 3.4-69 Grout Hole Location Plan for S221
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Figure 3.4-70 Grout Hole Location Plan for S250, S294 and S292
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