Operate 242-A Process Condensate System

Tank Farm Plant Operating Procedure

USQ # EV-18-1479-D, Rev. 0

CHANGE HISTORY (≤ LAST 5 REV-MODS)

<table>
<thead>
<tr>
<th>Rev-Mod</th>
<th>Release Date</th>
<th>Justification</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-7</td>
<td>09/17/2018</td>
<td>Operations Request</td>
<td>Figure 2 page 17 has PI-IL-S-1 that needs to be changed to PI-ILS-1.</td>
</tr>
</tbody>
</table>
| O-6 | 03/19/2018 | 242A MCS RC3/RC2/RC1 Sampler removal impacts | Struck out Step 5.1.4.2 "SET RC3-SAMP (G44/7, F26/3) PROCESS CONDSA SAMPLER SYSTEM to NO-SAMPL."
| | | | Struck out "/4" in Step 5.2.3 |
| | | | Struck out Step 5.3.3 "SET the RC3-SAMP (G44/7, F26/3) PROCESS CONDSA SAMPLER SYSTEM to “OFF” status." |
| O-5 | 01/02/2018 | To address WRPS-PER-17-1808 | Updated Records section. Changed last column in Checklist 1 to CHECK and added signature to the end. |
| O-4 | 03/06/2016 | Inconsequential change to update title of referenced document. | Updated title to TO-600-160. |
| O-3 | 07/25/2016 | Inconsequential Change | Updated Records section. |

Table of Contents

1.0 Purpose and Scope .. 3
 1.1 Purpose.. 3
 1.2 Scope.. 3

2.0 INFORMATION... 3
 2.1 General Information.. 3

3.0 PRECAUTIONS AND LIMITATIONS .. 4
 3.1 Personnel Safety... 4
 3.2 Radiation and Contamination Control ... 4
 3.3 Environmental Compliance .. 4
 3.4 Limits.. 4

4.0 PREREQUISITES ... 5
 4.1 Performance Documents .. 5
 4.2 Field Preparations ... 5

5.0 PROCEDURE ... 6
 5.1 Preparation for Startup of the Process Condensate (PC) System .. 6
 5.2 Start Up the PC System ... 8

Type	Document No.	Rev/Mod	Release Date	Page
CONTINUOUS | TO-640-020 | O-7 | 09/17/2018 | 1 of 17 |
Operate 242-A Process Condensate System

5.3 Shut Down the PC System... 9
5.4 Pump PC to 102-AW or TK-C-100 .. 10
5.5 Switch In-Line Strainers ... 11
5.6 Fill Tank TK-C-100 with Raw Water .. 12
5.7 Records ... 13

Checklist 1 - Process Condensate System Valve.. 14

Figure 1 - Process Condensate System .. 16

Figure 2 - Equipment Locations ... 17
1.0 PURPOSE AND SCOPE

1.1 Purpose

This procedure provides instructions for startup and shutdown of the 242-A Process Condensate System and cleaning the In-Line Strainer Filters while operating in compliance with Environmental monitoring and controls of RPP-16922, Environmental Specification Requirements (see Sections 4.0 and 7.0).

1.2 Scope

This procedure applies to the 242-A Process Condensate System, which includes Condensate Tank TK-C-100, Condensate Pump P-C-100, Condensate Filter F-C-1, In-Line Strainer F-C-3, and Process Condensate System components and instrumentation.

This procedure interfaces with other nuclear facilities, i.e., the interface between Tank Farms and the 242-A Evaporator.

2.0 INFORMATION

2.1 General Information

2.1.1 Valve positions for valves 1-16 and 1-17 are positioned so that if HV-RC3-3 goes to DIVERT, the diverted process condensate will be sent back to 102-AW. The valves are configured this way so that if tank TK-C-100 ever gets contaminated, the tank may be emptied without sending a person backside to perform a valving change to enable tank TK-C-100 to be emptied.

2.1.2 F-C-1 filter is required to be in service when process condensate is being transferred to LERF. If the F-C-1 filter is not in service or removed from service when transferring to LERF, weekly suspended solids sampling of the process condensate will be required.

2.1.3 The cascade on WFIC-C100, TK-C-100 WT FACTOR will automatically close when FIC-C1005 is placed in AUTO mode.

2.1.4 Because equipment nomenclature/numbering in this procedure refers to the MCS tags, the nomenclature/numbering may not accurately reflect Tags from SmartPlant Foundation.
3.0 PRECAUTIONS AND LIMITATIONS

3.1 Personnel Safety

3.1.1 The hazards associated with the performance of this procedure have been determined to be addressed by the GHA.

3.2 Radiation and Contamination Control

3.2.1 When performed without a work package, this procedure is limited to radiological areas and work activities permitted by a Radiological Work Permit (RWP).

3.2.2 When work is performed in or when work will result in a high contamination, high radiation, or an airborne radioactivity area, an approved work package must be developed which is reviewed by Radiological Control per ALARA work planning procedure TFC-ESHQ-RP_RWP-C-03.

3.3 Environmental Compliance

3.3.1 Report any information concerning spills or releases to the affected Shift Office and Environmental per TF-REC-001.

3.3.2 Process Condensate is considered a Dangerous Waster under WAC 173-303. Process Condensate and items that are generated from contact with Process Condensate upon disposal must be managed as Dangerous or Mixed Waste.

3.3.3 Diversion of Process Condensate to AW-102 requires the implementation of daily inspections of the piping located inside the Ion Exchange Room.

3.4 Limits

Environmental monitoring and controls during operations must be in compliance with RPP-16922, Environmental Specification Requirements, see Sections 4.0 and 7.0.
4.0 PREREQUISITES

4.1 Performance Documents

- TO-600-010, 242-A Evaporator Initial Valving Verification
- TO-600-160, Evaluate and Change 242-A Process Condensate Filter F-C-1
- H-2-98990, P&ID Process Condensate System
- ETF-60M-002, Waste Transfers at LERF Basins.

4.2 Field Preparations

4.2.1 The following conditions must be completed before this procedure may commence:

- If transferring process condensate to LERF, then ensure the proper route is established per Waste Management procedure POP-60M-002.
- Management has verified that all applicable surveillance procedures have been performed and that no equipment failures have been identified.
5.0 PROCEDURE

NOTE Sections 5.1 through 5.6 may be performed in any order at the direction of the Shift Manager.

5.1 Preparation for Startup of the Process Condensate (PC) System

NOTE - Valve locations are shown in Figure 1 and Figure 2.

5.1.1 IF TO-600-010 has been performed, GO TO Step 5.1.3.

5.1.2 PERFORM valve lineup per Checklist 1.

5.1.3 NOTIFY Liquid Water Processing Facilities (LWPF)/LERF of the startup of process condensate transfer.

5.1.4 PERFORM the following to allow pumping Process Condensate to LERF:

5.1.4.1 ENSURE the following valves are open:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>C-100 Inlet to Pump</td>
<td>OPEN</td>
</tr>
<tr>
<td>1-9</td>
<td>C-100 Outlet from Pump</td>
<td>OPEN</td>
</tr>
<tr>
<td>1-17</td>
<td>PC to 102-AW</td>
<td>OPEN</td>
</tr>
<tr>
<td>1-21</td>
<td>PCV-RC3-1 Isolation</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
Operate 242-A Process Condensate System

5.1 Preparation for Startup of the Process Condensate (PC) System (Cont.)

5.1.4.2 IF alternate leak detection method is used, GO to step 5.1.4.5.

5.1.4.3 CONFIRM LDI-A1 (G 64) leak detector is reading between 4.0 and 5.5 mA.

5.1.4.4 CONFIRM the following LERF leak detectors are not in alarm:
- LDA-60M01D (F28/13)
- LDA-60M01C (F28/14)
- LDA-43-2 (F28/15)
- LXA-60M01D (F29/12)
- LXA-60M01C (F29/13)
- LXA-43-2 (F29/14).

5.1.4.5 PLACE HV-RC3-3 (G44/6, F25/5) PROCESS CONDENSATE DIVERT VALVE status to CF-NORM.

5.1.4.6 SET FIC-C1005 (G18/9, F23/2) PC FLOW TO F-C-1 to manual and 35% output.

5.1.4.7 IF P-C100 (G18/7, F23/3) CONDENSATE TANK PUMP status is INTERLOK (G62), NOTIFY Shift Manager AND ATTEMPT to clear INTERLOK.

a. IF INTERLOK fails to clear, NOTIFY Shift Manager.
5.2 **Start Up the PC System**

5.2.1 **START** P-C100 (G18/7, F23/3) CONDSATE TANK PUMP.

5.2.2 **IF** II-P-C100 (G18, F23/4), PROCESS CONDSATE PUMP CURRENT reading is greater than 11.9 amps after 15 seconds, **SHUT DOWN** P-C100 (G18/7, F23/3) CONDSATE TANK PUMP AND **NOTIFY** Shift Manager of pump P-C100 High Amp condition.

5.2.3 **IF** pump P-C100 (G18/7, F23/3) CONDSATE TANK PUMP is running and RC3-PIG (G44/9, F26) PROCESS CONDSATE SAMPLE PIG shows LOW FLOW, **PERFORM** the following:

5.2.3.1 **PRESS** FIC-C1005 (G18/9, F23/2) PC FLOW TO F-C-1 and slowly up-ramp or slowly increase numerical value 5% more than the previous output, until PC FLOW TO F-C-1 flow rate is greater than 25 gpm.

5.2.3.2 **IF** RC3-PIG still shows LOW FLOW, **ADJUST** valve RC3-5 until flow through FIAS-RC3-1 is greater than 0.35 gpm.

5.2.3.3 **AFTER** flow through FIAS-RC3-1 is greater than 0.35 gpm, **CHECK** this alarm has reset.

5.2.3.4 **IF** Rotameter FIAS-RC3-1 shows flow greater than 0.35 gpm, and alarm has not reset, **NOTIFY** Shift Manager AND **CONFIRM** flow through FIAS-RC3-1 is greater than 0.35 gpm once per hour until this Alarm is reset.

5.2.4 **ADJUST** FIC-C1005 (G18/9, F23/2) PC FLOW TO F-C-1 flow rate to obtain TK-C-100 Weight Factor of 50 (48 to 52) %.

NOTE - The cascade on WFIC-C100 (G18/6, F23/1) TK-C-100 WT FACTOR will automatically close when FIC-C1005 (G18/9, F23/2) PC FLOW TO F-C-1 is placed in AUTO mode.

5.2.5 **AFTER** WFIC-C100 (G18/6, F23/1) TK-C-100 WT FACTOR has stabilized at 50 (48 to 52) %, **SET** FIC-C1005 (G18/9, F23/2) PC FLOW TO F-C-1 to AUTO mode.

5.2.6 **SET** WFIC-C100 (G18/6, F23/1) TK-C-100 WT FACTOR setpoint to 50%.

5.2.7 **MONITOR** WFIC-C100 (G18/6, F23/1) TK-C-100 WT FACTOR until the TK-C-100 level stabilizes between 48% to 52%.
5.3 **Shut Down the PC System**

NOTE - Valve locations are shown in Figure 1 and Figure 2.

5.3.1 **SHUT DOWN** P-C100 (G18/7, F23/3) CONDSATE TANK PUMP.

5.3.2 **IF** the shutdown is expected to be for an extended period of time (typically more than 24 hours), **POSITION** valves as shown below:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Description</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>C-100 Inlet to Pump</td>
<td>CLOSED</td>
</tr>
<tr>
<td>1-9</td>
<td>C-100 Outlet from Pump</td>
<td>CLOSED</td>
</tr>
<tr>
<td>1-17</td>
<td>PC to 102-AW</td>
<td>CLOSED</td>
</tr>
<tr>
<td>1-21</td>
<td>PCV-RC3-1 Isolation</td>
<td>CLOSED</td>
</tr>
</tbody>
</table>

5.3.3 **SET** FIC-C1005 (G18/9, F23/2) PC FLOW TO F-C-1 to manual and output to 35%.

5.3.4 **IF** shutting down the PROCESS CONDSATE SAMPLER SYSTEM for the final time at the end of an evaporator campaign, **PERFORM** the following:

5.3.4.1 **REQUEST** HPT survey F-C-1 filter housing.

5.3.4.2 **CONFIRM** F-C-1 filter housing reads < 5mR/hr.

5.3.4.3 **REPORT** reading to Shift Manager.
5.4 Pump PC to 102-AW or TK-C-100

Special Instructions

This Section can only be performed under the direction of Shift Manager.

5.4.1 PERFORM the following to pump PC to tank 102-AW or TK-C-100:

5.4.1.1 IF pumping to tank 102-AW, CONFIRM using MCS that valve 1-17 is OPEN, and 1-16 is CLOSED (G18).

5.4.1.2 IF pumping to TK-C-100, ENSURE valve 1-17 is set to CLOSED, and 1-16 to OPEN (G18).

5.4.1.3 ENSURE HV-RC3-3 (G44/6, F25/5) PROCESS CONDSATE DIVERT VALVE status is CF-DVRT.

NOTE - When HV-RC3-3 is in the CF-DVRT position, CMD-3 will be required to be utilized when starting pump P-C100.

- Low level shutdown is 27% for P-C100.

5.4.2 START P-C100 (G18/7, F23/3) CONDSATE TANK PUMP.

5.4.3 IF II-P-C100 (G18, F23/4) PROCESS CONDSATE PUMP CURRENT reading is greater than 11.9 amps after 15 seconds, SHUT DOWN P-C100 AND

NOTIFY Shift Manager of pump P-C100 High Amp condition.

5.4.4 SHUT DOWN P-C100 (G18/7, F23/3) CONDSATE TANK PUMP as directed by the Shift Manager.
5.5 **Switch In-Line Strainers**

NOTE - When PDI-ILS-1 (G44, F25/3) IX COL BASKET STRAINER DELTA P reaches greater than or equal to 12 psid, the "Online" Strainer requires cleaning.

5.5.1 **OPEN** bypass valve 2-39.

5.5.2 **POSITION** In-Line Strainer F-C-3 selection valve 2-40A to select the clean strainer.

5.5.3 **CLOSE** bypass valve 2-39.

5.5.4 **WHEN** HPT and Pipefitter are present and temporary contamination area is set up, **REQUEST** HPT to perform contamination survey while opening strainer drain valve 2-40B or 2-40C (whichever is on the isolated strainer) to drain strainer.

NOTE - Items or materials that come into contact with Process Condensate upon disposal must be managed as Dangerous or Mixed Waste.

5.5.5 **REQUEST** pipefitter clean strainer.

5.5.6 **WHEN** work is completed and system is restored, **DOWNPOST** work area to pre-work conditions.
5.6 Fill Tank TK-C-100 with Raw Water

5.6.1 REQUEST Shift Manager specify tank TK-C-100 fill level.

5.6.2 OPEN Valve 2C-1 to start raw water flow to tank TK-C-100 through seal pot.

5.6.3 MONITOR WFIC-C100 (G18/6, F23/1) TK-C-100 WT FACTOR as tank TK-C-100 fills.

5.6.4 WHEN WFIC-C100 (G18/6, F23/1) TK-C-100 WT FACTOR reaches the level specified by Shift Manager, CLOSE valve 2C-1.

5.6.5 IF seal pot level as shown by LG-SP-1 is greater than approximately ¾ full, PERFORM the following:

5.6.5.1 OPEN Valve 2C-4 until level is approximately ¾ full in the seal pot.

5.6.5.2 CLOSE Valve 2C-4.
5.7 Records

5.7.1 PERFORM the following for records identified within this procedure.

5.7.1.1 RECORD the number of times the record was generated in applicable column

OR

PLACE a check mark (√) in the N/A column.

5.7.1.2 SUBMIT the package or verification of completed records.

<table>
<thead>
<tr>
<th>Records Submittal Checklist</th>
<th>Number of times completed</th>
<th>N/A (√)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checklist 1 - Process Condensate System Valve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FWS/OE/Shift Manager SEND the completed records to the Central Shift Office for records retention.

___________________________ / ___________________________ / ______________
Signature Print (First & Last) Date

Shift Manager /OE

The record custodian identified in the company-level Records Inventory and Disposition Schedule (RIDS) is responsible for record retention in accordance with TFC-BSM-IRM_DC-C-02.
Checklist 1 - Process Condensate System Valve

<table>
<thead>
<tr>
<th>VALVE</th>
<th>FUNCTION</th>
<th>POSITION</th>
<th>Check (✓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Tank C100 Drain</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-3A</td>
<td>Tank C-100 Drain</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>Seal Loop Drain</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>Seal Loop Drain</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>Seal Loop Sight Glass Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-7</td>
<td>Seal Loop Sight Glass Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>C-100 Inlet to Pump</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-9</td>
<td>C-100 Outlet from Pump</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-9A</td>
<td>PI-C100-2 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>C-100 PC Sample</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-11</td>
<td>FC-1 Cuno Filter Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-12A</td>
<td>PT-FC1-3 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>FC-1 Cuno Filter Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-13</td>
<td>FC-1 Cuno Filter Drain</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-13A</td>
<td>FC-1 Cuno Filter Vent</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>FC-1 Cuno Filter Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-15A</td>
<td>PI-FC1-2 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-16</td>
<td>PC to C-100</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-17</td>
<td>PC to 102-AW</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-18</td>
<td>PCV-RC3-1 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-19</td>
<td>PCV-RC3-1 Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-20</td>
<td>PCV-RC3-1 Pressure Control</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-21</td>
<td>PCV-RC3-1 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-27</td>
<td>AFPC Return from Sampler</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-28</td>
<td>PC Flow Path</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>1-29</td>
<td>PC Line to RC3 Sampler</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-36</td>
<td>AFPC to Inline Rad Monitor</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-37</td>
<td>PC to SAM-RC3-1</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-54</td>
<td>PI-PC-1 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-55</td>
<td>PI-PC-2 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>1-56</td>
<td>PI-PC-3 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-24</td>
<td>FV-C100-5 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-25</td>
<td>FV-C100-5 Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-26</td>
<td>FV-C100-5 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on Next Page)
Checklist 1 - Process Condensate System Valve (Cont.)

<table>
<thead>
<tr>
<th>VALVE</th>
<th>FUNCTION</th>
<th>POSITION</th>
<th>Check (✓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-28</td>
<td>FIT-C100-1 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-29</td>
<td>FIT-C100-1 Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>FIT-C100-1 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-32</td>
<td>PC In-line Strainer Bypass to C-100</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-33</td>
<td>PC to LERF</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-35</td>
<td>RW to PC Line</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-36</td>
<td>TK-E-101 to PC Line</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-38</td>
<td>In-line Strainer Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-39</td>
<td>In-line Strainer Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-40</td>
<td>In-line Strainer Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-40A</td>
<td>F-C-3 Strainer Selector</td>
<td>CLEAN STRAINER</td>
<td></td>
</tr>
<tr>
<td>2-40B</td>
<td>F-C-3 Vent</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-40C</td>
<td>F-C-3 Vent</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-41</td>
<td>Auxiliary Connection</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-42</td>
<td>Sample Flush/vent Funnel</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>2-43</td>
<td>PC Return to TK-C-100</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-49</td>
<td>PSH-ILF-1 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-50</td>
<td>PT-ILS-5 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>2-51</td>
<td>PT-ILS-6 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>RC3-20</td>
<td>RC-3 Isolation</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>RC3-6</td>
<td>HV-RC3-2 Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>RC3-7</td>
<td>PC Grab Sample</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>RC3-15</td>
<td>PC Sample Bypass Return Line</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>RC3-16</td>
<td>FIAS-RC3-1 Bypass</td>
<td>CLOSED</td>
<td></td>
</tr>
</tbody>
</table>

Signature / **Operator** / **Date**

Signature / **Shift Manager /OE** / **Date**
Operate 242-A Process Condensate System

Figure 1 - Process Condensate System

FIGURE LEGEND

- Sight Glass
- Filter
- Pressure Gauge
- Pump

TABLE

<table>
<thead>
<tr>
<th>Type</th>
<th>Document No.</th>
<th>Rev/Mod</th>
<th>Release Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS</td>
<td>TO-640-020</td>
<td>O-7</td>
<td>09/17/2018</td>
<td>16 of 17</td>
</tr>
</tbody>
</table>
Figure 2 - Equipment Locations

Operate 242-A Process Condensate System

F-C-3 DUPLEX FILTER
640020f2