Operate 242-A Process Condensate (RC-3) Sampling System

USQ # EV-18-0265-D, Rev. 1

<table>
<thead>
<tr>
<th>Change History (< Last 5 Rev-Mods)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev-Mod</td>
</tr>
</tbody>
</table>
| O-7 | 04/12/2018 | Operations Request | Page 12 Step 5.2.12 typo Strike out "P" from PCAP
Page 12 Step 5.2.14 Update cross ref from 5.2.5 to 5.2.7
Page 15 Step 5.3.10.7 typo missed space between words.
Page 16 Step 5.3.13 Strike out "the cover" add "the" |
| O-6 | 02/15/2018 | 242-A Steam/Process Condensate Sampler Project | In purpose and scope changed RC3-7 struck out 1-26. Set 5.1.1 struck out “sampler control” Added new 5.1.2 “CONFIRM RC3-PIG status indicates FLUSHING” struck out row RC2-19 in tables. moved steps for Donning PPE, radiological surveys, Modified steps from valve 1-26 to RC3-7. Updated Records section. |
| O-5 | 12/05/2017 | Operations Request | Modified type water to Clean water and reagent water. For both samples and field blanks, Modified steps on filling out the sample bottle labels and the COC. Added new steps to check info between labels and COC for consistency. |
| O-4 | 04/12/2017 | 242-A Rad Monitor Upgrade Project | Step 5.1.3.5 Struck out "/8"
Step 5.1.7 Struck out "/8"
Step 5.1.9 Struck out "/4" |
| O-3 | 12/03/2015 | Operations Request | Removed direction for RSR or ORRSR in the Note and step 4.3.6 from page 7 to step 5.3.36 on page 20 |

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 PURPOSE AND SCOPE</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Scope</td>
<td>3</td>
</tr>
<tr>
<td>2.0 INFORMATION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Terms and Definitions</td>
<td>3</td>
</tr>
<tr>
<td>2.2 General Information</td>
<td>3</td>
</tr>
<tr>
<td>3.0 PRECAUTIONS AND LIMITATIONS</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Personnel Safety</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Equipment Safety</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Radiation and Contamination Control</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Environmental Compliance</td>
<td>5</td>
</tr>
<tr>
<td>4.0 PREREQUISITES</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Special Tools, Equipment, and Supplies</td>
<td>6</td>
</tr>
</tbody>
</table>
Operate 242-A Process Condensate (RC-3) Sampling System

4.2 Performance Documents.. 6
4.3 Field Preparations .. 7

5.0 PROCEDURE.. 8
5.1 Perform Flushing of RC-3 Monitoring Pig... 8
5.2 Sample Process Condensate from Valve RC3-7... 11
5.3 Process Condensate Protocol Sampling... 14
5.4 Records ... 18

Figure 1 - Grab Sample Location.. 19
Figure 2 - Normal Monitoring Route.. 20
Figure 3 - Monitoring Pig Flush Route... 21
1.0 PURPOSE AND SCOPE

1.1 Purpose

This procedure provides instructions for sampling process condensate from Valve RC3-7 and flushing the RC-3 Monitoring Pig.

1.2 Scope

This procedure applies to the RC-3 Radiation Monitoring Pig, and use of valve RC3-7 for collecting samples.

2.0 INFORMATION

2.1 Terms and Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>COC</td>
<td>Chain-of-Custody</td>
</tr>
<tr>
<td>ORRSR</td>
<td>Onsite Routine Radioactive Shipment Record (BlueCard)</td>
</tr>
<tr>
<td>RSR</td>
<td>Radioactive Shipment Record</td>
</tr>
<tr>
<td>SVOA</td>
<td>Semi-Volatile Organic Analysis</td>
</tr>
<tr>
<td>VOA</td>
<td>Volatile Organic Analysis</td>
</tr>
</tbody>
</table>

2.2 General Information

2.2.1 Continuous custody is maintained at all times from the time the protocol sample is taken until delivery to the laboratory or when protocol samples are turned over to a common carrier for shipment to an offsite location by one of the following:

2.2.1.1 Custodian has actual physical possession of sample.

2.2.1.2 After having physical possession, the Custodian:

- Has the sample in view,
- Has placed the sample in locked storage,
- Keeps the sample within a secured area (i.e., controlled by authorized personnel only),

OR

- Has applied a tamper-indicating device, such as evidence tape to the sample container or shipping container.
2.2 General Information (Cont.)

2.2.1.3 The Custodian has taken actual physical possession of the sample container or shipping container sealed with an intact tamper-indicating device, such as evidence tape.

2.2.2 Sample seal/evidence tape must remain intact and firmly attached to the sample shipping container to properly maintain the Chain-of-Custody. If a sample seal becomes detached from the sample shipping container or is broken during a survey or transport, Environmental Sampling Regulations may require the sample be retaken.

2.2.3 The 242-A Backside Operator is responsible for taking process condensate samples and, if required, maintaining sample Chain-of-Custody at the Evaporator.

2.2.4 A field blank sample may be taken. If so it will be directed by the Process Memo. The field blank consists of a number of bottles that are filled at the sampling location with clean water and then analyzed to determine whether any airborne contamination was present in the sampling area.
3.0 PRECAUTIONS AND LIMITATIONS

3.1 Personnel Safety

WARNING - Failure to exercise caution when handling samples may result in chemical and/or radiological contamination of personnel.

WARNING - Protocol sample containers may have small quantities of corrosive preservatives such as hydrochloric acid (HCl), nitric acid (HNO\textsubscript{3}), sodium hydroxide (NaOH), or sulfuric acid (H\textsubscript{2}SO\textsubscript{4}) that may cause harm to personnel if contacted.

3.1.1 To avoid sudden release of pressure that might result in injury and/or contamination spread, DO NOT open bulged or hot (above ambient temperature) containers.

3.2 Equipment Safety

CAUTION - Failure to exercise extreme care while taking samples may result in sample contamination.

3.3 Radiation and Contamination Control

3.3.1 Work in radiological areas will be performed using an applicable Radiological Work Permit.

3.3.2 The opening of any system or component within a radiological area requires the presence of a Health Physics Technician to verify contamination control.

3.4 Environmental Compliance

3.4.1 Report any information concerning spills or releases to the appropriate Shift Office and Environmental per TF-REC-001. This includes spills or releases to secondary containment.

3.4.2 Process Condensate is considered a Dangerous Waste under WAC 173-303. Process Condensate and items that are generated from contact with Process Condensate upon disposal must be managed as Dangerous or Mixed Waste.
4.0 **PREREQUISITES**

4.1 **Special Tools, Equipment, and Supplies**

The following supplies may be needed to perform this procedure:

- Black ink pen with waterproof ink
- Catch container(s)
- Rags
- 50-foot hose
- ASTM II water
- Clear plastic tape
- Tamper evident tape
- Pre-cleaned protocol containers with preservative added, and labeled
- Set of Field Quality Control containers (e.g., Trip Blanks)
- Absorbent Pads
- Plastic bags (10 mil and 4-mil as needed)
- Ice in plastic bags (multiple bags may be required) and/or Blue Ice
- Shipping container (ice chest)
- Gloves (Nitrile, Latex, Vinyl)
- Protective clothing (per RWP and Chemical requirements)
- One, 1-gallon, plastic jug
- Sample bottles and labels
- Sample seal/evidence tape (if required by Process Memo)
- Chain-of-Custody/Sample Analysis Request (COC), (if required by Process Memo)
- Contaminant-free (clean) water (e.g., reagent water, deionized water or ‘Q’ water from 222-S) will be needed if a field blank is required. The Process Memo for sampling will provide details. Raw water or tap water cannot be used for the field blank

4.2 **Performance Documents**

The following documents may be needed to perform this procedure:

- TO-100-052, Perform Waste Generation, Segregation, Accumulation and Clean-up
4.3 Field Preparations

4.3.1 ENSURE the 242-A Evaporator Process Condensate system is operating.

4.3.2 PLACE sample labels on sample bottles AND USING black pen with waterproof ink, PERFORM the following:

4.3.2.1 RECORD the Time/Date Sample was taken

4.3.2.2 RECORD Sample Collector Initials

4.3.2.3 COVER sample labels with clear plastic tape to protect them from moisture.

4.3.3 OBTAIN the following sampling documentation:

- Copy of 242-65J-002, Sampling Operations at 242-A Evaporator
- Chain-of-Custody/Sample Analysis Request (COC)

4.3.4 IF applicable to the sampling being performed, OBTAIN the following sampling documentation:

- Process Memo
- Onsite Routine Radioactive Shipment Record (ORRSR) (BlueCard)
- Radioactive Shipment Record (RSR)

4.3.5 REVIEW GHS-SDS and/or MSDS for the following:

- Hydrochloric acid
- Nitric acid
- Sodium hydroxide
- Sulfuric acid

4.3.6 ENSURE Radiological Control is notified prior to sampling.

4.3.7 OBEY facility postings for hearing protection.
Operate 242-A Process Condensate (RC-3) Sampling System

5.0 PROCEDURE

5.1 Perform Flushing of RC-3 Monitoring Pig

NOTE - This section is performed only when directed by Shift Manager.

5.1.1 SET RC3-PIG (G44/9, F26) PROCESS CONDSATE SAMPLE PIG to FLUSH.

5.1.2 CONFIRM RC3-PIG status indicates FLUSHING.

5.1.3 ENSURE valve A2-4 is OPEN.

5.1.4 IF flushing with a hose is desired, PERFORM the following:

5.1.4.1 CONNECT one end of a 50-foot hose to valve 1-40.

5.1.4.2 CONNECT the other end to valve 2-41.

5.1.4.3 POSITION valves as follows:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Position</th>
<th>Description</th>
<th>Complete (✓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-41</td>
<td>OPEN</td>
<td>Hose connection on level 2</td>
<td></td>
</tr>
<tr>
<td>2-43</td>
<td>CLOSED</td>
<td>Block valve on sample return line to TK-C-100 on level 2</td>
<td></td>
</tr>
<tr>
<td>2-42</td>
<td>CLOSED</td>
<td>Block valve on funnel flush line on level 2</td>
<td></td>
</tr>
<tr>
<td>RC3-20</td>
<td>CLOSED</td>
<td>RE-RC3-1 block valve</td>
<td></td>
</tr>
<tr>
<td>RC3-15</td>
<td>CLOSED</td>
<td>1/2-inch sample bypass return drain valve</td>
<td></td>
</tr>
<tr>
<td>RC3-16</td>
<td>OPEN</td>
<td>FIAS RC3-1 bypass valve</td>
<td></td>
</tr>
<tr>
<td>RC3-5</td>
<td>OPEN</td>
<td>Block valve to FIAS RC3-1</td>
<td></td>
</tr>
<tr>
<td>RC3-6</td>
<td>OPEN</td>
<td>Drain valve</td>
<td></td>
</tr>
</tbody>
</table>
5.1 Perform Flushing of RC-3 Monitoring Pig (Cont.)

5.1.4.4 SLOWLY OPEN valve 1-40.

5.1.4.5 MONITOR for radiation levels AND FLUSH, as necessary, to adequately reduce radiation levels shown on RI-RC3-1 (G44, F26) PROCESS CONDENSATE SAMPLER RADN, as directed by Shift Manager.

5.1.4.6 WHEN flush is complete, SLOWLY close valve 1-40.

5.1.4.7 GO TO Step 5.1.9.

5.1.5 IF flushing with a hose was not performed, POSITION valves as follows:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Position</th>
<th>Description</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-41</td>
<td>CLOSED</td>
<td>Hose connection on Level 2</td>
<td></td>
</tr>
<tr>
<td>2-43</td>
<td>CLOSED</td>
<td>Block valve on sample return line to TK-C-100 on Level 2</td>
<td></td>
</tr>
<tr>
<td>2-42</td>
<td>OPEN</td>
<td>Block valve on funnel flush line on Level 2</td>
<td></td>
</tr>
<tr>
<td>RC3-20</td>
<td>CLOSED</td>
<td>RE-RC3-1 block valve</td>
<td></td>
</tr>
<tr>
<td>RC3-15</td>
<td>CLOSED</td>
<td>1/2-inch sample bypass return drain valve</td>
<td></td>
</tr>
<tr>
<td>RC3-16</td>
<td>OPEN</td>
<td>FIAS RC3-1 bypass valve</td>
<td></td>
</tr>
<tr>
<td>RC3-5</td>
<td>OPEN</td>
<td>Block valve to FIAS RC3-1</td>
<td></td>
</tr>
<tr>
<td>RC3-6</td>
<td>OPEN</td>
<td>Drain valve</td>
<td></td>
</tr>
</tbody>
</table>

5.1.6 FILL one 1-gallon plastic jug with raw water.

5.1.7 SLOWLY POUR raw water from 1-gallon plastic jug into sample flush funnel.
5.1 Perform Flushing of RC-3 Monitoring Pig (Cont.)

5.1.8 **MONITOR** for radiation levels **AND**

REPEAT Steps 5.1.6 and 5.1.7 as often as necessary to flush the system and adequately reduce radiation levels shown on RI-RC3-1 (G44 F26) PROCESS CONDSATE SAMPLER RADN, as directed by Shift Manager.

5.1.9 **WHEN** flush is complete, **POSITION** valves as follows:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Position</th>
<th>Description</th>
<th>Complete (✓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC3-6</td>
<td>CLOSED</td>
<td>Drain valve</td>
<td></td>
</tr>
<tr>
<td>RC3-5</td>
<td>÷ OPEN</td>
<td>Block valve to FIAS RC3-1</td>
<td></td>
</tr>
<tr>
<td>RC3-16</td>
<td>CLOSED</td>
<td>FIAS RC3-1 bypass valve</td>
<td></td>
</tr>
<tr>
<td>RC3-15</td>
<td>CLOSED</td>
<td>1/2-inch sample bypass return drain valve</td>
<td></td>
</tr>
<tr>
<td>RC3-20</td>
<td>OPEN</td>
<td>RE-RC3-1 block valve</td>
<td></td>
</tr>
<tr>
<td>2-41</td>
<td>CLOSED</td>
<td>Hose connection on 2nd level</td>
<td></td>
</tr>
<tr>
<td>2-42</td>
<td>CLOSED</td>
<td>Block valve on funnel flush line on level 2</td>
<td></td>
</tr>
<tr>
<td>2-43</td>
<td>OPEN</td>
<td>Block valve on sample return line to TK-C-100 on level 2</td>
<td></td>
</tr>
</tbody>
</table>

5.1.10 **SET** RC3-PIG (G44/9, F26) PROCESS CONDSATE SAMPLE PIG to NO FLUSH.

5.1.11 **CONFIRM** RC3-PIG status indicates MONTRING.

5.1.12 **IF** a hose was used for flush, **DISCONNECT** hose from valves 1-40 and 2-41.

5.1.13 **NOTIFY** Shift Manager that flushing is complete.
5.2 Sample Process Condensate from Valve RC3-7

NOTE - Frequency of sampling and number of samples are specified by Process Memo or as requested by Shift Manager.
- If more than one sample bottle is requested, the same sample number will be used for each bottle.

5.2.1 NOTIFY Control Room Operator.

5.2.2 OBTAIN appropriate number of sample bottle(s) from the supply cabinet.

5.2.3 DON proper PPE.

- Face shield
- Chemical goggles or Safety Glasses with side shields
- Nitrile gloves
- Arm Sleeves

5.2.4 SLOWLY OPEN valve RC3-7 for approximately 2-3 minutes to flush sample line into sample sink.

5.2.5 AFTER flushing is complete, CLOSE valve RC3-7.
5.2 Sample Process Condensate from Valve RC3-7 (Cont.)

WARNING
Failure to exercise caution when handling samples may result in chemical and/or radiological contamination of personnel.

CAUTION
Failure to exercise extreme care while taking samples may result in sample contamination.

5.2.6 **PLACE** hose assembly in sample bottle.
5.2.7 **SLOWLY OPEN** valve RC3-7.
5.2.8 **ALLOW** sample bottle to fill up.
5.2.9 **CLOSE** valve RC3-7.
5.2.10 **REMOVE** hose assembly from sample bottle.
5.2.11 **CAP** sample bottle.
5.2.12 **WIPE DOWN** sample bottle.
5.2.13 **IF** multiple bottles are to be filled, **REPEAT** Steps 5.2.6 through 5.2.12.
5.2.14 **ENTER** on the COC, the following information for each sample taken:
- Collector’s name
- Collection Date and Time for each sample (from sample labels)
5.2.15 **CHECK** information on container labels and COC is complete, consistent, and correct.
5.2 Sample Process Condensate from Valve RC3-7 (Cont.)

NOTE - The Process Memo for sampling will provide details. Raw water or tap water cannot be used for the field blank.

5.2.16 IF a field blank is required, UNCAP field blank sample bottle and fill with clean water (raw water or tap water may not be used).

5.2.17 CAP field blank sample bottle.

5.2.18 WIPE DOWN bottle.

5.2.19 IF multiple field blank bottles are to be filled, REPEAT Steps 5.2.16 through 5.2.18.

5.2.20 ENTER on the COC, the following information for each sample taken:
- Collector's name
- Collection Date and Time for each sample (from sample labels)

5.2.21 CHECK information on container labels and COC is complete, consistent, and correct.

NOTE - Items or materials that come into contact with Process Condensate upon disposal must be managed as Dangerous or Mixed Waste.

5.2.22 DISCARD used rags and used chemical PPE in an appropriate container per TO-100-052.

5.2.23 TRANSPORT sample bottle(s) to step off pad.

5.2.24 REQUEST radiological survey of the exterior of the sample bottles and packaging.

5.2.25 IF contamination or radiation readings are above background, NOTIFY Shift Manager and Radiological Control.

5.2.26 PACKAGE samples and transport per 242-65J-002.

5.2.27 ENSURE a post-job radiological survey is performed.
5.3 Process Condensate Protocol Sampling

NOTE - The COC is a document that contains the laboratory request for analysis information and possession information from time the sample is generated to disposal. The Process Memo provides frequency of sampling and additional sampling instructions.

- The Operator’s name in the “Collector” box needs to be the same as that in the First “Relinquished By” box.

5.3.1 DON proper PPE.
 - Face shield
 - Chemical goggles or Safety Glasses with side shields
 - Nitrile gloves
 - Chemical resistant apron with long sleeve shirt/lab/coat or chemical resistant jacket
 - Arm Sleeves

5.3.2 ENSURE a radiological pre-job survey is performed.

5.3.3 NOTIFY the Control Room Operator of the following information from COC and/or Process Memo:
 - Date: Month, day and year
 - Time: To be completed later
 - Sample stream: Process Condensate
 - Sample location: valve RC3-7.

5.3.4 OBTAIN appropriate number and size of sample bottles as directed by COC.

5.3.5 ENSURE sample container labels match information contained on the COC.

5.3.6 IF discrepancies exist between COC and labels, REQUEST Engineering to resolve discrepancies.

5.3.7 OPEN valve RC3-7 for approximately 2-3 minutes to flush hose assembly with process condensate.

5.3.8 AFTER flushing is complete, CLOSE valve RC3-7.
5.3 Process Condensate Protocol Sampling (Cont.)

WARNING

Protocol sample containers may have small quantities of corrosive preservatives such as hydrochloric acid (HCl), nitric acid (HNO₃), sodium hydroxide (NaOH), or sulfuric acid (H₂SO₄) that may cause harm to personnel if contacted.

5.3.9 **FILL** sample containers in the following order:
- Volatile Organic Analysis (VOA),
- Semi Volatile Organic Analysis (SVOA), and others unless directed otherwise in the COC’s special instructions.

5.3.10 **IF** VOA sample, **PERFORM** the following:

5.3.10.1 **MAINTAIN** dust cover on cap.

5.3.10.2 **SLOWLY OPEN** valve RC3-7 to fill sample container without introducing air bubbles into sample until there is no headspace remaining.

5.3.10.3 **CLOSE** valve RC3-7.

5.3.10.4 **CAP** sample container and invert.

5.3.10.5 **TAP** sample container gently and inspect sample for air bubbles.

5.3.10.6 **IF** air bubbles are present, **REMOVE** cap AND **REPEAT** Steps 5.3.10.1 through 5.3.10.5.

5.3.10.7 **IF** air bubbles are still present after three attempts, **RETAKE** sample in a new container and dispose of previous sample.

5.3.10.8 **WIPE DOWN** sample container.

5.3.10.9 **IF** multiple sample containers are to be filled, **REPEAT** Steps 5.3.10.1 through 5.3.10.8.

5.3.10.10 **IF** trip blank is required, **STORE** trip blank with sample.
5.3 Process Condensate Protocol Sampling (Cont.)

NOTE - Items or materials that come into contact with Process Condensate upon disposal must be managed as Dangerous or Mixed Waste.

5.3.10.11 **DISCARD** used rags and used chemical PPE in appropriate container per TO-100-052.

5.3.11 **IF** NON-VOA sample, **PERFORM** the following:

5.3.11.1 **SLOWLY OPEN** valve RC3-7 to fill sample container to 1/4 inch of container neck.

5.3.11.2 **CLOSE** valve RC3-7.

5.3.11.3 **CAP** sample container immediately after filling.

5.3.11.4 **WIPE DOWN** sample container.

5.3.11.5 **IF** multiple sample containers are to be filled, **REPEAT** Steps 5.3.11.1 through 5.3.11.4.

5.3.11.6 **IF** field duplicate is requested, **TAKE** a sample per Steps 5.3.11.1 through 5.3.11.5.

NOTE - The Process Memo for sampling will provide details. Raw water or tap water cannot be used for the field blank.

5.3.11.7 **IF** field blank is requested, **POUR** clean water (not raw water nor tap water) into the appropriate labeled bottles.

NOTE - Items or materials that come into contact with Process Condensate upon disposal must be managed as Dangerous or Mixed Waste.

5.3.11.8 **DISCARD** used rags and used chemical PPE in appropriate container per TO-100-052.

5.3.12 **ENTER** sample collector name, date, and time on sample container labels.

5.3.13 **ENSURE** sample number is not covered with tamper evidence tape **AND**

ATTACH sample seal/evidence tape vertically from the sample bottle lid to the side of sample bottle such that sample seal/evidence tape must be broken to remove sample.
5.3 Process Condensate Protocol Sampling (Cont.)

NOTE - If the sample seal/evidence tape peels off the sample shipping container during shipment or is otherwise broken, Environmental Sampling Regulations may require the sample to be retaken.

5.3.14 IF sample seal/evidence tape is broken or damaged at any time after attachment to the sample shipping container, PERFORM the following actions to replace it:

5.3.14.1 LEAVE original sample seal/evidence tape intact and attached to sample shipping container.

5.3.14.2 OBTAIN a new sample seal/evidence tape.

5.3.14.3 ATTACH sample seal/evidence tape vertically from the sample shipping container lid to the side of the sample shipping container such that the sample seal must be broken to remove the samples and the old seal/tape is not covered.

5.3.14.4 AFTER new seal/tape is attached, IDENTIFY the reason for the second sample seal in the “Possible Sample Hazards/Remarks” blank of the Chain-of-Custody Form.

5.3.15 ENTER on the COC the sample collector name, date, and time on sample container labels.

5.3.16 CHECK that information on container labels and COC are complete, consistent, and correct.

5.3.17 REQUEST radiological survey of the exterior of the sample bottles and packaging.

5.3.18 IF contamination or radiation surveys are above background, NOTIFY Shift Manager.

5.3.19 PACKAGE samples for shipment to Lab per 242-65J-002.
5.4 Records

No records are generated during the performance of this procedure. However PM data sheets associated with the procedure are records and are maintained in the work package as record material.

The record custodian identified in the Company Level Records Inventory and Disposition Schedule (RIDS) is responsible for record retention in accordance with TFC-BSM-IRM_DC-C-02.
Operate 242-A Process Condensate (RC-3) Sampling System

Figure 1 - Grab Sample Location
Operate 242-A Process Condensate (RC-3) Sampling System

Figure 2 - Normal Monitoring Route
Figure 3 - Monitoring Pig Flush Route