Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 PURPOSE AND SCOPE</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Scope</td>
<td>3</td>
</tr>
<tr>
<td>2.0 INFORMATION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 General Information</td>
<td>3</td>
</tr>
<tr>
<td>3.0 PRECAUTIONS AND LIMITATIONS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Personnel Safety</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Radiation and Contamination Control</td>
<td>4</td>
</tr>
<tr>
<td>4.0 PREREQUISITES</td>
<td>5</td>
</tr>
<tr>
<td>4.1 Special Tools, Equipment and Supplies</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Performance Documents</td>
<td>5</td>
</tr>
<tr>
<td>4.3 Field Preparation</td>
<td>5</td>
</tr>
<tr>
<td>5.0 PROCEDURE</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Obtain As-Found Data</td>
<td>6</td>
</tr>
<tr>
<td>5.2 Calibration</td>
<td>8</td>
</tr>
<tr>
<td>5.3 Barton Turbine Flowmeter Pickup Coil Check</td>
<td>11</td>
</tr>
<tr>
<td>5.4 Restoration</td>
<td>13</td>
</tr>
</tbody>
</table>

Change History (≤ last 5 Rev-Mods)

<table>
<thead>
<tr>
<th>Rev-Mod</th>
<th>Release Date</th>
<th>Justification</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-0</td>
<td>02/03/2016</td>
<td>Periodic Review</td>
<td>Changed Notes prior to 5.1, 5.1.2 and 5.2.17 to Special Instructions. Reword Steps 5.3.2, 5.3.11, 5.3.12, 5.4.10 and 4th bullet under 5.6.2.</td>
</tr>
<tr>
<td>B-1</td>
<td>11/11/2014</td>
<td>CHAMPS Removal</td>
<td>CHAMPS Removal, new records statement</td>
</tr>
<tr>
<td>B-0</td>
<td>12/10/2012</td>
<td>Periodic Review</td>
<td>Updated step format to current standards and removed unnecessary information.</td>
</tr>
<tr>
<td>A-1</td>
<td>07/28/2012</td>
<td>WRPS-PER-2009-1954</td>
<td>Reworded Step 3.1.2 to show maximum voltage. Added Shop/Bench cal to Section 4.1. Reword 4.3, 5.1.6, 5.3.2, & 5.4.2. Struck Steps 5.1.2, 5.1.5, 5.1.9. Added Note prior to 5.1.2, Added Steps 5.3.4, and 5.3.10.</td>
</tr>
</tbody>
</table>
Calibrate NuFlo MC-II Flow Analyzer

5.5 Acceptance Criteria... 13
5.6 Review .. 14
5.7 Records ... 14

Figure 1 – NuFlo MC-II Flow Analyzer Display with Control Keys .. 15
Figure 2 – NuFlo MC-II Flow Analyzer Internal View and Lay-out .. 16
Figure 3 – NuFlo MC-II Flow Analyzer with Signal Generator Input .. 17
Figure 4 – Barton Liquid Turbine Meter .. 18
Attachment 1 NuFlo MC II Plus Keypad Operation .. 19
Attachment 2 NuFlo MC II Plus Configuration Menu Flowchart ... 20
1.0 PURPOSE AND SCOPE

1.1 Purpose

This procedure provides instructions for Calibrating NuFlo MC-11 flow analyzer and checking pickup coil of Barton Series 7100 Turbine Flowmeter. Also to verify the Monitor and Control System (MCS) readout/display connected to the transmitter is reading correctly.

1.2 Scope

This procedure pertains to NuFlo MC-11 flow analyzer and Barton Series 7100 Turbine Flowmeter and checking its readout at 242-A MCS.

This procedure has no steps to correct MCS out-of-tolerance readout/display readings.

2.0 INFORMATION

2.1 General Information

2.1.1 This procedure does not calibrate the Barton Turbine Flowmeter which would require actual flow through the unit and installation of a calibrated flow test meter, which is impractical. Testing the pickup coil will be performed and confirming a frequency output with flow established. The sensor is factory calibrated and transmitter monitoring circuitry provides indication of failure.

2.1.2 While in the Calibrate Mode, the upper line of the display will have prompts consisting of abbreviated words. Due to the limitations of a 7-segment character, some of the letters will be upper case and some lower case.

The calibration data is entered on the lower line of the display. While in the Calibrate Mode, each digit is changed one at a time. The digit selected to be changed will be blinking on and off.
3.0 PRECAUTIONS AND LIMITATIONS

3.1 Personnel Safety

3.1.1 An Energized Electrical Work Permit is not required when working on energized parts that operate at less than 50 volts potential per TFC-ESHQ-S-STD-03.

The maximum voltage encountered when connecting and disconnecting from terminal strips is 24 VDC.

3.2 Radiation and Contamination Control

Work in radiological areas will be performed using a Radiological Work Permit following review by Radiological Control per the ALARA Work Planning procedure TFC-ESHQ-RP_RWP-C-03.
4.0 PREREQUISITES

4.1 Special Tools, Equipment and Supplies

4.1.1 The following supplies may be needed to perform this procedure:

- Kneeling Pad (When performing field calibration in condenser room basement)

NOTE - Measuring and Test Equipment (M&TE) used to collect acceptance criteria data during performance of this procedure shall meet the following requirements:

- Be within its current calibration cycle as evidenced by an affixed calibration label
- Be capable of desired range
- Have an accuracy consistent with state-of-the-art limitations greater than M&TE tolerance specified on PMID/Data Sheet or at least 4 times greater than specified device tolerance.
- Digital Multimeter (DMM)
- Oscilloscope
- 800 ± 1 ohm Precision Resistor (for Shop/Bench Cal)
- Signal Generator
- Power supply capable of outputting 24 VDC (Bench Test only)
- Other tools, equipment and supplies as identified by Shift Manager/OE/FWS/User.

4.2 Performance Documents

The following documents may be needed to perform this procedure:

- MC-II Flow Analyzer User Manual #101001394, Rev. F
- Barton 7000 Series Turbine Flowmeter User Manual #9A-11350 Rev. 01.
- H-2-98990, SH 1, Rev., 13 – P&ID, Process Condensate System

4.3 Field Preparation

4.3.1 REQUEST Operations to remove the following from service for testing:

- FE-RC3-1; Barton Liquid Turbine Meter
- FT-RC3-1; NuFlo MC-II Flow Analyzer
5.0 PROCEDURE

Special Instructions

If performance of any steps in this procedure is not required for procedure completion, steps not performed are to be marked, "N/A" in appropriate Data Sheet signoff space, and explained in comments/remarks section of Data Sheet.

5.1 Obtain As-Found Data

5.1.1 IF performing calibration in the field, CONFIRM Operations has removed the following from service for testing:
- FE-RC3-1; Barton Liquid Turbine Meter
- FT-RC3-1; NuFlo MC-II Flow Analyzer

NOTE - The maximum voltage encountered when connecting and disconnecting from terminal strips is approximately 24 VDC.

5.1.2 ROTATE the cover of the MC-II enclosure counter-clockwise until it unscrews from the main body of the enclosure (see Figure 1).

5.1.3 REMOVE the two screws located to the right and left side of the display using a small standard blade screwdriver (see Figure 2).

5.1.4 LIFT the display keypad assembly from the enclosure leaving the battery connected.

5.1.4.1 POSITION the circuit assembly to prevent contact with the enclosure when power is re-applied, e.g. tape, barriers etc.

5.1.5 LIFT field leads from turbine flow meter from TB2, terminals 11 (+) and 12 (-) at NuFlo MC-II Flow Analyzer (see Figure 2 and Figure 3).

5.1.6 LIFT the 4 to 20 mA output field lead from TB2, terminal 8 (-) at NuFlo MC-II Flow Analyzer (see Figure 3) AND INSTALL DMM in series observing polarity.

5.1.7 IF a bench calibration is considered necessary, PERFORM the following:

5.1.7.1 DISCONNECT equipment from the system.

5.1.7.2 TRANSPORT to shop for bench calibration.
5.1 Obtain As-Found Data (Cont.)

5.1.8 CONNECT Frequency Generator as shown in Figure 3 to MC-II Plus, TB2, terminals 11 (+) and 12 (-) observing polarity.

5.1.9 ENSURE circuit assembly is positioned to prevent contact with the enclosure when power is re-applied, e.g. tape, barriers etc.

5.1.10 APPLY 24 VDC power to NuFlo MC-II Flow Analyzer.

5.1.11 ALLOW the equipment under test to warm for approximately 2 minutes to achieve stability.

NOTE - The signal from the turbine flowmeter is a low-voltage AC sine wave that can be as low as 30mV peak-to-peak.

Special Instructions

Adjusting the frequency generator peak-to-peak voltage while applying input values may be necessary to obtain the required output signal.

5.1.12 APPLY input values per Data Sheet AND RECORD As-Found values on Data Sheet.

5.1.13 IF As-Found values are not within specified tolerance per Data Sheet, GO TO Calibration Section 5.2,

OR

IF As-Found values are within specified tolerance and optimization is desired, GO TO Calibration Section 5.2,

OR

IF As-Found values are within specified tolerance, RECORD As-Found values in As-Left column of Data Sheet.

5.1.14 GO TO Restoration, Section 5.4

OR

IF requested by Shift Manager/OE to check Turbine Flowmeter pick-up coil, GO TO Section 5.3.
5.2 Calibration

NOTE - 0.0 gpm is equal to 4.0 mA output and 100.0 gpm is equal to 20.0 mA output.

5.2.1 ENSURE the test equipment is still connected as in Section 5.1.

5.2.2 REFER to Attachment 1 for keypad operation and Attachment 2 for Configuration Menu Flowchart as necessary.

5.2.3 ENTER the calibrate mode by pressing the “ACCESS” key.

5.2.4 ACCEPT current settings by pressing “ENTER” until the “4-20.oUt” prompt appears on the upper line of the display.

5.2.5 PRESS “INCR” to toggle the bottom line to ON (in order to enable the 4-20 mA output feature).

5.2.5.1 PRESS “ENTER”.

NOTE - The available decimal point selections are 0.0, 0.00, 0.000 and 0 (factory default is 0.0). The current selection is shown on the lower line of the display.

- The “currently” selected Rate Units (gpm) are displayed.

5.2.6 IF the value is “0.0” at the “Lo A.d.P” prompt, PRESS “ENTER” (this is the flow rate that equals 4 mA).

5.2.6.1 IF the decimal point placement is not “0.0,” PRESS “INCR” to change the decimal point setting on the flow rate that equals 4 mA.

5.2.6.2 PRESS “ENTER.”

5.2.7 IF the value at the “Lo A.Eng” prompt is (0.0) gpm, PRESS “ENTER.”

5.2.7.1 IF the value is not (0.0) gpm, USE the “INCR” and “STEP” keys to enter the flow rate that equals 4 mA.

5.2.7.2 PRESS “ENTER.”

5.2.8 IF the value is (0.0) at the “Hi A.d.P” prompt, PRESS “ENTER.”

5.2.8.1 IF the decimal point placement is not “0.0,” PRESS “INCR” to change decimal point setting on the flow rate that equals 20 mA.

a. PRESS “ENTER.”
5.2 Calibration (Cont.)

5.2.9 IF the value at the “Hi A.Eng” prompt is “100.0” gpm, PRESS “ENTER.”

5.2.9.1 IF the value is not “100.0” gpm, USE the “INCR” and “STEP” keys to enter the flow rate that is represented by 20.0 mA.

5.2.9.2 PRESS “ENTER.”

5.2.10 AT the “CAL.A Lo” prompt, CHECK the M&TE milliamp reading is minimum value per Data Sheet.

5.2.11 IF the NuFlo MC-II display is equivalent to the M&TE milliamp reading, PRESS “ENTER.”

5.2.12 IF NuFlo MC-II display does not match M&TE reading, USE the “INCR” and “STEP” keys to enter the M&TE reading into the lower line of the display.

5.2.12.1 PRESS “ENTER.”

5.2.13 AT the “CAL.A Hi” prompt, CHECK the M&TE milliamp reading is maximum value per Data Sheet.

5.2.14 IF the NuFlo MC-II display is equivalent to the M&TE milliamp reading, PRESS “ENTER”.

5.2.15 IF the NuFlo MC-II display does not match the M&TE reading, USE the “INCR” and “STEP” keys to enter the M&TE reading into the lower line of the display.

5.2.15.1 PRESS “ENTER.”

5.2.16 PRESS “ACCESS” to exit the Calibrate Mode.

NOTE - The signal from the turbine flowmeter is a low-voltage AC sine wave that can be as low as 30mV peak-to-peak.

Special Instructions

Adjusting the frequency generator peak-to-peak voltage while applying input values may be necessary to obtain the desired output signal.

5.2.17 APPLY input values per Data Sheet.

5.2.17.1 CHECK output values for tolerance.
5.2 Calibration (Cont.)

5.2.18 IF values are within tolerance per Data Sheet, **RECORD** As-Left values on Data Sheet.

5.2.18.1 **GO TO** Restoration, Section 5.4

OR

IF requested by Shift Manager/OE to check Turbine Flowmeter pick-up coil, **GO TO** Section 5.3.

5.2.19 IF values are not within tolerance per Data Sheet, **REPEAT** Steps 5.2.3 through 5.2.18 until values are within tolerance

OR

IF unable to bring values into tolerance **NOTIFY** OE/Shift Manager for resolution.
5.3 Barton Turbine Flowmeter Pickup Coil Check

NOTE - This Section is only performed if there is reason to believe there is no flowmeter output or it is incorrect. This Section may be performed independently of the other sections.

This test only determines that the pick-up coil is not open/shorted, and if there is an output frequency during flow. This is not a flowmeter calibration.

5.3.1 IF performing “Pick-Up Coil Check” in the field, REQUEST Operations to valve-out FE-RC3-1; Barton Liquid Turbine Meter for testing.

5.3.2 REMOVE the Pick-Up Coil connector from the Barton Turbine Meter per Figure 4.

5.3.3 WHEN no-flow condition exists, MEASURE the resistance between the pickup coil output pins with an ohmmeter.

5.3.3.1 CHECK the resistance is approximately 1200 ohms.

5.3.3.2 RECORD results on Data Sheet.

5.3.4 MEASURE the resistance between each pin and the pickup coil housing.

5.3.4.1 CHECK the resistance is at least 100 megohms for each pin.

5.3.4.2 RECORD results on Data Sheet.

5.3.5 NOTIFY Operations to valve-in FE-RC3-1; Barton Liquid Turbine Meter for normal operations.

5.3.6 CONNECT an oscilloscope to the pickup coil output pins.

5.3.7 REQUEST operations to establish a flow (≥ 10 gpm) through FE-RC3-1 Barton Liquid Turbine Meter,

OR

IF performing bench test, USE a shop vacuum or low pressure air to spin the turbine.
5.3 Barton Turbine Flowmeter Pickup Coil Check (Cont.)

NOTE - The signal from the flowmeter is a low-voltage AC sine wave that can be as low as 30mV peak-to-peak.

5.3.8 CHECK for the presence of a frequency output when flow is established.

5.3.9 RECORD results on Data Sheet.

5.3.10 IF any of the above readings are not per the Data Sheet, NOTIFY FWS the pickup coil is defective and replacement is necessary.

5.3.11 WHEN replacing Pickup Coil, SCREW the pickup clockwise finger tight AND

ROTATE the pickup counter-clockwise one quarter (¼) turn.

NOTE - A ⅜-inch 12-point thin wall deep socket is required to tighten jam nut.

5.3.11.1 TURN the jam nut clockwise until the pickup is secure.

5.3.12 RE-CONNECT the Pick-Up coil to Turbine meter connector.
5.4 Restoration

5.4.1 IF any problems were encountered with calibration, INFORM FWS.

5.4.2 REMOVE Test Equipment.

5.4.3 IF only Section 5.3, Barton Turbine Flowmeter Pickup Coil Check was performed, GO TO Step 5.4.10.

5.4.4 IF equipment was removed to shop for additional bench testing in Step 5.1.7, RE-INSTALL to “As Found” condition.

5.4.5 IF field leads were removed, RECONNECT field leads (observing polarity) to the turbine meter and the 4 to 20 mA output (see Figure 2 and Figure 3).

5.4.6 REMOVE any tape, barriers etc. used for insulation on circuit assembly.

5.4.7 INSTALL the keypad circuit assembly with display back into the MC-II housing taking care not to pinch the ribbon cable or battery wiring.

5.4.8 REINSTALL the two screws located to the right and left side of the display using a small standard blade screwdriver (see Figure 2).

5.4.9 ROTATE the cover of the MC-II enclosure clockwise until there is a snug fit with the main body of the enclosure (see Figure 1).

5.4.10 RECORD the Test Equipment information and calibration status on Data Sheet.

5.4.11 NOTIFY Operations that testing is complete and system may be returned to desired configuration.

5.4.12 CHECK equipment restoration by observing indications are consistent with expected conditions.

5.5 Acceptance Criteria

Acceptance Criteria has been met when Steps in this procedure have been satisfactorily performed and As-Left values meet the specifications and tolerance(s) per the Data Sheet.
5.6 Review

5.6.1 INFORM FWS test is complete.

5.6.2 FWS REVIEW AND CORRECT the following as necessary:

- Completed Data Sheets meet the acceptance criteria.
- Comments sections are filled out appropriately.
- Work requests needed as a result of this procedure are identified and generated.
- Work request number(s) of any work documents generated as a result of this procedure, are recorded in the Comments/Remarks section of the Data Sheet.

5.7 Records

The performance of this procedure generates no records. However, PM Data Sheets associated with the procedure, are records and are maintained in the work package as record material.

The record custodian identified in the company-level Records Inventory and Disposition Schedule (RIDS) is responsible for record retention in accordance with TFC-BSM-IRM_DC-C-02.
Figure 1 – NuFlo MC-II Flow Analyzer Display with Control Keys
Figure 2 – NuFlo MC-II Flow Analyzer Internal View and Lay-out

CUTAWAY SIDE - INTERIOR VIEW

SCALE FULL

TERMINAL BLOCK TB1

RIBBON CABLE

CIRCUIT BOARD TO SWITCHPLATE MOUNTING SCREW(S)

DISPLAY SWITCHPLATE ASSEMBLY - BOTTOM VIEW

FRONT INTERIOR VIEW

BATTERY

BASE PLATE MOUNTING SCREWS

BATTERY HOLDER

CIRCUIT ASSEMBLY

TERMINAL BLOCK TB2

CIRCUIT BOARD BATTERY CABLE CONNECTORS J4 & J5

RIBBON CABLE

SWITCHPLATE ASSEMBLY

SWITCHPLATE CIRCUIT BOARD ASSEMBLY MOUNTING SCREW(S)
Calibrate NuFlo MC-II Flow Analyzer

Figure 3 – NuFlo MC-II Flow Analyzer with Signal Generator Input

![Diagram of NuFlo MC-II Flow Analyzer with Signal Generator Input](image-url)
Calibrate NuFlo MC-II Flow Analyzer

Figure 4 – Barton Liquid Turbine Meter
Attachment 1 NuFlo MC II Plus Keypad Operation

ACCESS If the ACCESS key is pressed while in the Run Mode, the MC-II Plus Flow Analyzer will be placed in the Calibrate Mode. Pressing the ACCESS key while the MC-II Plus Flow Analyzer is in the Calibrate Mode will return the instrument to the Run Mode. When returning to Run Mode by pressing the ACCESS key, any data that has been input with the ENTER key being pressed afterward will be saved to memory. Any data that has been input without the ENTER key being pressed afterward will not be saved, and the data entered from a previous calibration will be retained.

STEP The STEP key is primarily used in the Calibrate Mode. Pressing the STEP key advances the digit to be changed to the left. If the left-most digit is selected, pressing the STEP key again advances the digit to be changed to the right-most digit. The STEP key is also used to toggle settings and decimal point locations.

INCR The INCR (increment) key is primarily used in the Calibrate Mode. While entering numbers, the INCR key advances the value of the digit to be changed by one from its initial value each time it is pressed. If the INCR key is pressed when the digit is nine, the value rolls over to zero. The INCR key is also used to toggle settings and decimal point locations.

ENTER The ENTER key functions only in the Calibrate Mode. Pressing the ENTER key enters the displayed data for the current calibration function and advances to the next calibration function.
NOTE 1. PREVIOUS CALIBRATION SELECTION/VALUE IS DEFAULT.

POWER UP OR RESET

SEGMENT TEST

DISPLAY ROM VERSION

Pro9 no 102

DATA INTEGRITY TEST

PASS

FIRMWARE DECISION

ENTER CODE

SEC Code 0000

YES

CORRECT CODE?

YES

FIRMWARE DECISION

NO

FIRMWARE DECISION

SECURITY CODE ACTIVE?

YES

FIRMWARE DECISION

NO

FIRMWARE DECISION

ACCESS

PRESSING ACCESS WHILE IN RUN MODE STARTS THE CALIBRATE MODE. PRESSING ACCESS WHILE IN CALIBRATE MODE RETURNS TO RUN MODE.

RUN MODE

ACCESS

288.40" 48.50"
Calibrate NuFlo MC-II Flow Analyzer

Attachment 2 NuFlo MC II Plus Configuration Menu Flowchart (Cont.)

NOTE 1. PREVIOUS CALIBRATION SELECTION/VALUE IS DEFAULT.

Attachment 2 NuFlo MC II Plus Configuration Menu Flowchart (Cont.)
NOTE 1. PREVIOUS CALIBRATION SELECTION VALUE IS DEFAULT.
Calibrate NuFlo MC-II Flow Analyzer

Attachment 2 NuFlo MC II Plus Configuration Menu Flowchart (Cont.)

```
D
SELECT RATE FILTER
ENTER
SELECT AMP AND SQUARE SENSITIVITY
ENTER
SELECT PULSE OUT
OFF
ON
ENTER
SELECT PULSE OUTPUT SCALE FACTOR
ENTER
SELECT PULSE WIDTH DURATION
ENTER

PRESS INC/D TO CHANGE
SEQUENCE: NONE
5
10
20
SEE NOTE 1
FACTORY DEFAULT IS NONE.

PRESS INC/D TO CHANGE
SEQUENCE: 20
40
60
80
100
120
SEE NOTE 1
FACTORY DEFAULT IS 20.

PRESS INC/D TO CHANGE
SEQUENCE: OFF
ON
SEE NOTE 1
FACTORY DEFAULT IS OFF.

PRESS INC/D TO CHANGE
MINIMUM PULSE SCALE FACTOR
LIMITED BY VOLUME
DECIMAL POINT
SEQUENCE: 0.001
0.01
0.1
1
10
100
SEE NOTE 1
DEFAULT IS BASED ON TOTALS
DECIMAL POINT SETTING,
CURRENT VOLUME UNIT INDICATED

PRESS INC/D TO CHANGE
SEQUENCE: 65
130
195
260
325
390
SEE NOTE 1
FACTORY DEFAULT IS 130.
```
NOTE 1. PREVIOUS CALIBRATION SELECTION/VALUE IS DEFAULT.

Attachment 2 NuFlo MC II Plus Configuration Menu Flowchart (Cont.)
NOTE 1: PREVIOUS CALIBRATION SELECTION/VALUE IS DEFAULT.

E

ENTER ANALOG OUTPUT ZERO CALIBRATION

ENTER

F

ENTRY ANALOG OUTPUT FULL SCALE CALIBRATION

ENTER

DECIMAL POINT FIXED AT 0.000. CONNECT mA METER TO LOOP. ENTER 4 DIGIT METER READING. SEE NOTE 1. FACTORY DEFAULT IS 4.000.

DECIMAL POINT FIXED AT 0.000. CONNECT mA METER TO LOOP. ENTER 5 DIGIT METER READING. SEE NOTE 1. FACTORY DEFAULT IS 20.000.

PRESS INCR TO CHANGE. SEQUENCE: OFF ON SEE NOTE 1. FACTORY DEFAULT IS OFF.

SELECT SECURITY CODE OFF

ON

ENTER

ENTER SECURITY CODE

ENTER

ENTER 4 DIGIT SECURITY CODE. SEE NOTE 1. FACTORY DEFAULT IS 0000.

RETURN TO RUN MODE