TABLE OF CONTENTS

SUMMARY .. 3

INTRODUCTION .. 4

DEVELOPMENT AND MAINTENANCE OF THE FACILITY MASTER PLAN .. 5

SITE DEVELOPMENT FOR THE HAMMER FACILITY .. 5

PROJECT PLANNING ... 6
PRIORITIZATION AND DEVELOPMENT GUIDELINES ... 6
ISSUES REQUIRING RESOLUTION ... 7
FUTURE PLANNING ... 8

NATIONAL ENVIRONMENTAL POLICY ACT COMPLIANCE 8

HAMMER ENVIRONMENTAL ASSESSMENT .. 9
PROJECT DOCUMENTATION .. 9

FIGURE 1: HAMMER SITE MAP .. 10

FIGURE 2: HAMMER EXPANSION AREAS ... 11

FIGURE 3: PATROL TRAINING ACADEMY MAP .. 12

APPENDIX A: HAMMER PROJECTS ... 13

APPENDIX B: HAMMER SMALL PROJECT LIST .. 20

APPENDIX C: MITIGATING ACTIONS .. 21

ACROYMNS ... 23
SUMMARY

The purpose of the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training Center Facility Upgrade Plan is to describe facility upgrades and facility development necessary to support the implementation of HAMMER's mission and vision. This plan identifies facility modifications, infrastructure expansion, new facilities, and training props that are needed to support Hanford Site cleanup, future operations of the Waste Treatment Plant and growing new missions.

This plan also supports HAMMER's readiness to serve emerging Site health and safety issues such as Beryllium and Fall Protection programs. Initiatives in this plan will position HAMMER to continue to support Hanford Site contractors as well as expanding to support non-EM funded training such as National Guard Bureau Civil Support Teams (CST’s), Federal Law Enforcement Training Center (FLETC), U.S. Department of State training, and regional U.S. Department of Homeland Security training. This expansion will benefit the site through exchange of best practices, costs sharing of new facilities, and the availability of a nationally recognized training industry in the Tri-Cities.
INTRODUCTION

The Hanford Site cleanup mission requires a strong and effective health and safety training program. One of the key elements in support of the cleanup mission is the hands-on training capabilities of HAMMER known for high learning retention.

HAMMER must remain capable of supporting the delivery of performance-based, standardized health and safety training programs for Hanford workers. Training curricula at HAMMER use blended learning methodologies that include a strong focus on hands-on worker training. In addition, HAMMER’s external customer base of government clients continues to expand and require additional classrooms, training props and supporting infrastructure. This infrastructure includes offices for subject matter experts and support staff for new programs.

Construction of HAMMER’s original 120-acre site (including an 80-acre main campus and a 40-acre expansion area) was completed in September 1997. Figure 1: HAMMER Site Map is a site map of the main HAMMER campus. Facilities management, construction project management, and maintenance of the 10,000 acre Hanford Patrol Training Academy (PTA) Figure 3: Patrol Training Academy Map was transferred to HAMMER in September 1998. In October 2000, HAMMER was granted an additional 210-acres on which to further develop its training facilities and capabilities.

Figure 2: HAMMER Expansion Area shows the development of the HAMMER site since 2000 and the area left for further development. Approximately 10-acres were developed for the Cold Test Facility, operated by Washington River Protection Solutions (WRPS). The original 40 acre expansion area was combined with 40 acres from the 2000 expansion and transferred by the Department of Energy (DOE) for the development of the National Utility Training and Education Center (NUTEC). Recently 7.75 acres were transferred back to HAMMER. Approximately 70-acres of the 2000 expansion were transferred to the Hanford Patrol Training Academy for construction of the Emergency Vehicle Operations Course (EVOC).

The Southwest corner of the HAMMER site was also transferred to the Office of River Protection to build a Waste Treatment and Immobilization Plant (WTP) Project Simulator Training Facility. The simulator facility will eventually be used to provide training to systems
operators for the WTP (currently under construction). HAMMER began as a local community initiative based on the concept that one facility dedicated to health, safety, and emergency response training could service both the Hanford Site and the region. The facility is located within the Hanford Nuclear Reservation and is mandated by Congress to serve the training needs of the Hanford Site as a first priority. HAMMER has grown into a national training resource and is well known for its ability to provide realistic “hands-on” training using performance based props and simulations, as well as its unique partnering approach and professional customer-oriented staff.

DEVELOPMENT AND MAINTENANCE OF THE FACILITY MASTER PLAN

This plan was created to identify and prioritize the projects necessary for HAMMER’s continued growth in support of the existing and future customer base. This plan encompasses new construction, facility modifications, props, and infrastructure changes. Specific details of each project are identified in Appendix A: HAMMER Projects.

The current contract between U.S. Department of Energy (DOE) and the Mission Support Contractor, Mission Support Alliance (MSA), requires that an annual HAMMER Facility Upgrade Plan be submitted to DOE for approval. Flexibility and updates to this plan will be required as the clean-up mission evolves on the Hanford Site and new customers are acquired.

SITE DEVELOPMENT FOR THE HAMMER FACILITY

The Facility Master Plan provides a reference guide for the physical development of the HAMMER Site by the following:

- Establishing future expansion areas
- Establishing guidelines to encourage cost effective development, minimize conflicts, and provide versatility to meet multiple customer needs
- Establishing a simple process to plan and prioritize future development
- Identifying issues that require further analysis
PROJECT PLANNING

The training programs and other health and safety related initiatives conducted at HAMMER have varying needs when it comes to physical facilities and props. A list of major proposed HAMMER projects can be seen in Appendix A: HAMMER Projects.

Additional facility upgrades have been identified and compiled into a HAMMER Small Project List in Appendix B: HAMMER Small Project List.

PRIORITIZATION AND DEVELOPMENT GUIDELINES

Future development of the campus will be prioritized based upon the following:

1. Projects addressing HAMMER facility safety or health concerns.
2. Projects supporting the Hanford Site cleanup, Waste Treatment Facility, props addressing safety and health concerns, and facilities and props that support the standardization of site-wide training.
3. Projects funded from other federal agencies that will benefit Hanford training programs.
4. Projects funded from other federal agencies that have a long-term mission, do not necessarily benefit Hanford training programs, but do not interfere with ongoing Hanford support.
5. Non-federal funded projects that have a long-term mission, do not necessarily benefit Hanford training programs, but do not interfere with ongoing Hanford support.
Future development shall follow these general guidelines:

- As a Voluntary Protection Program Star Site, HAMMER design reviews will include worker involvement and a focus on safety and health to ensure any site addition or modification will identify and address these potential issues.
- New props, classrooms, and training areas will be safe, versatile and allow for simple reconfiguration to meet the needs of multiple training programs.
- New facilities at HAMMER will utilize as much existing design and specification information for recent buildings as possible to reduce design costs.
- Landscaping will be provided around new props, buildings to include lawn areas, shrubbery, trees where appropriate, and natural desert vegetation of sagebrush and wild flowers.
- In accordance with the Federal Energy Management Program, energy efficiency measures will be included in new buildings and plant systems.
- Facility modification and additions will include the extension and upgrade of the campus communications infrastructure to ensure current technology is extended with ample room for bandwidth growth as well as for anticipating future technology needs.
- Construction projects will be subject to DOE acceptance of construction funding from non-DOE entities.

ISSUES REQUIRING RESOLUTION

In compiling this plan, major planning issues were identified which, if not resolved, could significantly reduce the ability to move forward on identified projects. These issues include:

- The lack of funding to perform detailed design and cost estimates for proposed projects.
- Challenges associated with multi-agency funding of proposed projects and subsequent training events.
- The development/expansion of infrastructure to support the Waste Treatment Plant and future missions.
FUTURE PLANNING

The HAMMER/Hanford Training organization has reviewed the available information for future needs and made a strong attempt to plan accordingly. However, it is recognized that there may be future opportunities and challenges resulting from evolving partnerships and changing missions, which have not been included in this plan. These future opportunities and challenges will be addressed in the annual update to the HAMMER Facility Upgrade Plan. Changes to the plan may include requirements from standardized site wide training programs, startup and operations of the WTP and emerging safety and health needs. Likewise, with the growth of HAMMER’s external mission, there will be opportunities to add to, or modify, HAMMER facilities using non-Hanford funding. As other entities expand their investment in HAMMER equipment and facilities, the Hanford Site benefits from these additional resources that can be leveraged to provide support for training that would not usually be present at Hanford for Site personnel.

Hanford Site clean-up funding will continue to impact student training requirements and HAMMER facility needs. Site standardization of core training programs, will also increase the HAMMER training population. Flexibility is a key component for planning HAMMER facility needs and has been incorporated into this facility master planning process to the maximum extent possible.

Expansion areas have been identified and recorded by the MSA Land & Facilities Management group. These areas provide a location for future office, classroom and prop training areas supporting the HAMMER mission. Figure 2: HAMMER Expansion Areas:

NATIONAL ENVIRONMENTAL POLICY ACT COMPLIANCE

Throughout the evaluation of a project, particular attention is given to the identification and integration of relevant environmental requirements and values. The National Environmental Policy Act (NEPA) applies to federal agencies and is designed to ensure environmental factors are considered in the decision making process. It requires NEPA documentation to be completed prior to any alternative selection. NEPA requires preparation of an Environmental Impact Statement (EIS) for proposed federal agency actions. If the agency is uncertain if potential
environmental impacts warrant an EIS, then they may elect to prepare an Environmental Assessment (EA). The result of an EA is either a “Finding of No Significant Impact” (FONSI) or the need to prepare an EIS. Certain proposed actions have been categorically excluded because they do not individually or cumulatively have a significant impact on human health or the environment and are therefore exempt from the requirement to prepare an EIS.

HAMMER ENVIRONMENTAL ASSESSMENT

A NEPA Categorical Exclusion (CX) was granted for the original 120-acre HAMMER Site. The CX cited B1.2 (training exercises and simulations) and B1.15 (sighting, construction, and operation of small-scale support buildings and support structures for education and training). Throughout the development of the 120-acres, the CX has been used for all construction projects. However, with the addition of the 210-acre expansion area, DOE-RL determined that an Environmental Assessment (EA) would be necessary to guide any future construction activity taking place on the expansion area, with the exception of the Cold Test Facility, which was constructed under a separate CX.

The EA process was completed on November 6, 2002, and a Finding of No Significant Impact (FONSI) was issued by DOE-RL\(^1\). As a part of the EA process, a Mitigation Action Plan was developed for the biological resources found on the expansion area. All new construction on the expansion area will require implementing the mitigation actions listed in Appendix C: Mitigating Actions.

PROJECT DOCUMENTATION

Construction projects require an evaluation by the MSA Environmental Compliance Officer for potential NEPA requirements. New construction involving excavations or clearing and grubbing must have ecological surveys performed by the MSA Energy and Environmental Services organization to identify relevant requirements and to assist with possible mitigation actions. All NEPA documentation is to be maintained in the project file. In addition to NEPA, each project will be reviewed to identify any other permit requirements that may apply, i.e., Washington State Department of Ecology, City of Richland, Benton County, etc.

9
FIGURE 1: HAMMER SITE MAP
FIGURE 2: HAMMER EXPANSION AREAS
FIGURE 3: PATROL TRAINING ACADEMY MAP
APPENDIX A: HAMMER PROJECTS

By definition, these projects exceed $150K. Projects of lesser value but more than $50K are shown in Appendix B: HAMMER Small Project List.

Existing/Funded Projects

International Border Security Field Exercise Training Building

U.S. Department of State field exercise training building 120’ x 140’, which will include the following:

- A steel metal building with electronic roll-up doors (four) 16’ wide and 16’ high to accommodate tractor-trailers loaded with single 40’ containers to traverse through the building in two directions. (This permits portal monitor training exercises independent of wind direction).
- A 40’x 20’ cage for an Air Launch Cruise Missile (ALCM) and SCUD along with the Missile Technology Control storyboard. HAMMER & PNNL currently have these items but the use is hampered by lack of suitable space.
- Adequate space for placing radiation portal monitors along a vehicle drive path through the building in two directions.
- Adequate space for tabletop discussions using Special Nuclear Material (SNM).

The building will be used for International Border Guard Training, Mega-Port Training, Customs and Border Protection Training and various other Weapons of Mass Destruction (WMD) Training Courses. When not in use by the U.S. Department of State it will be available to HAMMER for alternative uses including Hanford Training. This project is currently underway and will be completed in July, 2012.

Estimated Cost: $2.9M
Funding Source: U.S. Department of State
Planned DOE Projects

Projects under $500K

Tactical Maze Building Modifications

This project provides modifications to the infrastructure of the Tactical Maze Building to maximize usage in support of Site-wide training. Building modifications will provide for insulating the Tactical Maze facility building, upgrading the electrical service capabilities and installing a heating, ventilation, and air conditioning (HVAC) system. Current electrical capabilities require enhancement to support existing training requirements or allow for use of additional equipment within training scenarios, particularly with potential training using portable props to support the Vitrification Plant startup. Initial planning has identified that skid mounted props with piping and/or other system components may provide the most effective synergistic training for personnel. This operational enhancement will allow for expanded and extended use of the prop for additional training scenarios as well as extend the operational viability of the prop into extreme summer or winter weather conditions.

Preliminary Estimated Cost: $200K

Funding Source: DOE

Radiological Practical Exercise Building and Outdoor Practical Evaluation Training Area

The proposed training area would be geographically located in close proximity to the existing the Volpentest Annex where Hanford Radiation Worker and Radiological Control Technician (RCT) training is currently conducted. This area would consist of a structure with a adjacent outdoor radiological training area. This project will construct approximately 30 ft by 70 ft steel building that would include warehouse storage for training materials, an open area covered training for practical Radiological exercises during inclement weather and a space configured based on current Hanford Tank Farm Double Shell change room trailers. The change room trailers would be configured at grade to improve worker safety during training. A Personal Contamination
Monitor (PCM) will be installed in the training change room and available to duplicate actual field procedures and site requirements. This training facility will support the future training support needs of Tank Farms operations that support the Hanford Vitrification Plant.

The adjacent outdoor prop will connected to the building change trailer exit. The enclosed area will contain tank risers, wellheads, mockup electric cabinets and other equipment used on the Hanford Site. The plan addresses the need for improved outdoor radiological training events and reflects the fact that 50% of Hanford site radiological work occurs in outdoor areas. The adjacent fenced area (2,000 sq. ft.) is to be used for student radiological training evaluation and testing. The outdoor training area would require only fencing and minimal site preparation. The majority of the space will be either open or segmented with props simulating facility radiological areas. This would allow for more realistic practical exercises and upset conditions. Locating the outdoor area near Volpentest Annex will reduce the time spent getting from the classroom to the props and back and safety issues of students transiting between training areas.

Additionally the building will have an RMA to replace existing CONEX source storage, including the calibrator source and the ProbePak. This will simplify our source accountability. We will be able to securely lock the building and have control over its use, which will make it the ideal prop for using dispersible radioactive material for training (Tc-99m).

Preliminary Estimated Cost: $475K
Funding Source: DOE
HAMMER Property Fence

In 2010, the Dept. of Energy and the Dept. of Education agreed to a transfer of land to HAMMER for Hanford mission needs. The land transfer increased the size of the HAMMER campus by approximately 7.7 acres. This project will extend the HAMMER perimeter fence around the property. The fence will be approximately 2,400 feet long. This project could be broken into three separate smaller pieces for funding constraints.

Preliminary Estimated Cost: $235K
Funding Source: DOE

Projects over $500K

Project T-224, Hoisting & Rigging Training Facility

This project will enclose the existing Crane & Rigging Pad with an 80 x 95 square foot pre-engineered structure. The structure would include a set of large doors at each end to enable equipment entry and exit. Upgrade electrical service for additional lighting loads/new props. The facility would accommodate multiple classes and performance evaluations for hoisting, rigging, and load securement. The facility will allow training to continue during inclement weather, eliminate health concerns/clean up costs with bird nests/droppings on equipment, and reduce maintenance/extend equipment life by sheltering it. The 60% Definitive Design of the T-224 Project is provided on drawings H-6-17529 through H-6-17540.

Preliminary cost estimate: $800K
Funding Source: DOE

Volpentest Annex Building – Phase II

Construct a building similar to building 6096 designed to accommodate additional classrooms, laboratories, and offices required to provide for new and expanded Site-wide Radiological training programs for the Hanford Site. The new facility will support the Criticality Safety Program, key professional and exempt radiological control positions training, and Radiological
Control Technician (RCT) training. The potential exists that the Vitrification plant will require specialty training in areas such as ALARA, remote handling, task and qualification training and equipment qualification. The existence of another building would allow the existing Rad training area to focus on fundamental training and the new building to be dedicated to providing exempt and RCT advanced training as well as radiological training for other Federal agencies.

Preliminary cost estimates are based on necessary classroom and office configurations, required equipment, and infrastructure design criteria.

Preliminary Estimated Cost: $1.8M
Funding Source: DOE

Industrial Safety and Health Practical Training Building

The proposed Industrial Safety and Health (IS&H) Practical Training Building will be a 120’ x 60’ x 25’ high building and will provide much needed space for Electrical Safety, Mask Fit, Lockout/Tagout (LOTO), Fall Protection, Scaffold Safety, Hoisting and Rigging, and Suspect Counterfeit training. The building will replace three aged mobile offices currently located on the HAMMER campus. The building will consist of two sections, a 40’ x 60’ practical classroom section and an 80’ x 60’ high bay section. The practical classroom section of the building will be temperature-controlled and have two process systems, one charged with potable water. These two process systems will be used to facilitate several variations of LOTO and hazardous waste training activities. Floor drains will capture and remove any water dispersed from the potable water system. This section of the building will also include a small motor control center room with low-voltage electrical equipment that will also be used for LOTO training. The high bay section of the building will include a wall ladder extending ten-feet high with a fall arrest system and a landing platform designed for Fall Protection training; two large roll-up doors on opposite sides of the building to allow straight line access for vehicles; a double door between the enclosed section and open section to accommodate decontamination lines and increase variability of scenarios; and a small bridge or mono-rail crane erected for hoisting and rigging training activities.

Preliminary Estimated Cost: $1.9M
Funding Source: DOE
HAMMER Open Area Training Area

Currently HAMMER contracts support with the State of Washington and City of Richland for use of the 10 acre city owned bomb pit located adjacent to HAMMER for various training scenarios. The large area allows for the creation of effective outside scenarios and the simultaneous realistic staging of support and response resources. Due to HAMMER’s established relationships with Federal and military agencies HAMMER has observed an increased use of the city area annually over the past five years and anticipates that use of the bomb pit activities will increase due external customer demand over the next several years. Due to State funding challenges and subsequent shifts in state resources we are seeing an increase in turndown for scheduling support that is not expected to improve at any time in the near future. Training cannot occur for most training events without support from State employees. HAMMER has performed an evaluation and business case estimate that indicates that self-performing training at a location on the HAMMER campus significantly reduces the need for external staff support, would reduce overall customer cost, and increase HAMMER revenues. Construction cost would be minimal and consist primarily on site preparation and fencing.

Preliminary Estimated Cost: TBD
Funding Source: TBD

Potential Federal Agency Projects without identified Sponsor

Energy Building

Construct a multiple-purpose building that would serve as a day-to-day training facility, as a Remote Energy Response Center for the OE Infrastructure Security and Energy Restoration (OE-30) effort under the National Response Framework during energy emergencies, and a model test facility that would generate real-time data to be used for Research and Development of smart grid technology under the Federal Energy Management Program. With ever-increasing attacks in the cyber world, considerable effort is being made in securing our nation’s energy transmission and distribution system, or “grid”. Supervisory Control and Data Acquisition (SCADA) systems are currently an integral part of the grid and could be vulnerable to cyber attacks. The U.S.
government, along with the electricity industry, is looking at developing and implementing improved SCADA systems along with other new technology to make the nation’s energy grid “smarter” and more secure. This facility would serve as a test bed for this new smart grid technology and would be designed in such a way as to monitor office space for climate control and test other conservation efforts using the building’s HVAC system. Facility would also include an outside area or large indoor bay area that would support a small, non-energized, substation with working switchgear and an integrated distribution system that would contain SCADA plug-in capability. A simulated dispatch center or control room would provide the final piece for testing an integrated grid system.

Preliminary Estimated Cost: $2-4 M
Potential Funding Source: DOE HQ Office of Electricity Delivery and Energy Reliability (OE); Energy Efficiency and Renewable Energy (EERE)

U.S. DEPARTMENT OF DEFENSE POTENTIAL PROJECTS

Partial Structural Collapse Building with Associated Rubble Pile

Design, develop, and construct a partially collapsed structure that consists of four fully functional rooms with multiple points of front-entry and two rooms that are partially collapsed and tied to an attached searchable rubble pile. Associated with the collapsed structure will be a second rubble pile that will have the capability to simulate an actual collapse during training activities and sessions. Primarily non-Hanford users such as military units including Army chemical and Explosive Ordnance Disposal (EOD) as well as D&D workers, Hanford Fire and mutual aid fire and emergency responders will use this training site.

Preliminary Estimated Cost: TBD
Funding Source: DOD

MOUT - Military Operations in Urban Terrain Facility

Develop and construct a multi-structure Military Operations in Urban Terrain (MOUT) Site. Construction of the site will consist of six buildings and “store fronts” to create a realistic urban environment. The MOUT “town” will consist of two multi-storied structures and four additional
multi-use buildings, including a series of tunnels connecting three of the structures and an open space area for use as a terrorist lab location. Construction will use several types of prefabricated stud cast building systems and ASTM A36 or equivalent, high cube steel shipping crates externally configured to simulate various building types. Design incorporates standard, breachable, and roll-up doorways, stairways, “mouse holes,” balconies, and courtyard walls to enhance training realism.

MOUT Site will be utilized by National Guard (NG) CST, Chemical, Biological, Radiological/Nuclear, and Explosive (CBRNE) - Enhanced Response Force Package (CERFP) and EOD units. Site is also configured to support active Army chemical and EOD units as well as civilian Police, Fire, and HAZMAT elements and Hanford Patrol.

Preliminary Estimated Cost: TBD
Funding Source: DOD

APPENDIX B: HAMMER SMALL PROJECT LIST

These projects by definition are more than $50K and less than $150K. Ongoing maintenance work of less than $50K will be covered in the existing HAMMER Operations organization budget.
APPENDIX C: MITIGATING ACTIONS

Sagebrush Habitat

HAMMER will maintain responsibility for compensatory sagebrush mitigation for the areas within the HAMMER expansion. In the event HAMMER would need to remove sagebrush from either of the identified residual islands, the sagebrush will be replaced at a replacement ratio of 3:1. The planting effort will be based on the recommended replacement units in the existing Hanford Site Biological Resources Mitigation Strategy (BRMS) (DOE/RL 2003), presently defined as 1000 tubings or barefoot/ha or as directed in any revision to the BRMS or the site wide Biological Resource Management Plan (DOE/RL 2001). Therefore, under current guidance 3000 plants, spread out over 3 ha (7.5 ac) will be planted for each ha (2.5 ac) of sagebrush steppe that is disturbed.

If such mitigation is required, it will be performed at a location adjacent or near the HAMMER facility; or further from HAMMER if such a location would provide for better long-term protection of the mitigation site (the area surrounding HAMMER is within a designated industrial development zone within the HCP-EIS [DOE 1999]). The specific location will be selected based on the current development plans for the region, and in conjunction with Hanford Site biologists.

Migratory Birds

To the extent possible, ground-disturbing construction activities will be performed outside of the nesting season (assumed to be April through July). In the event that ground-clearing activities must occur during the nesting season, additional surveys will be performed to identify possible nesting sites, and plans to mitigate the disturbance of identified nests will be evaluated and carried out on a case-by-case basis in cooperation with Hanford Site biologists. If any nesting birds (if not a nest, a pair of birds of the same species or a single bird that will not leave the area when disturbed) are encountered, or bird defensive behaviors (flying at workers, refusal to leave area, strident vocalizations) are observed, then a biological resource specialist will be contacted for further consultation.

Re-vegetation
Areas disturbed by construction activities will be re-vegetated using species native to the Hanford Site. All disturbed areas will be re-vegetated with a grass seed mix approved by Hanford Site biologists. Grass species will include Indian rice grass, squirrel-tail bottlebrush, and sandberg bluegrass, bluebunch wheatgrass, and needle-and-thread Grass.

In addition, native forb species will be planted in selected portions of the site to increase the overall species diversity within the re-vegetated areas. Forbs will be broadcast planted with the grass seed. Forb species may include stalk-pod milkvetch, crouching milkvetch, and buckwheat milk-vetch, balsamroot, hawk's-beard, turpentine spring-parsley, fleabanes, wallflower, sand beardtongue, prairie clover, longleaf phlox, scorpion weed, globe mallow, and mariposa lily.
ACROYMNNS

ALCM Air Launch Cruise Missile
ASTM American Society for Testing and Materials
CERFP Chemical, Biological, Radiological/Nuclear, and Explosive (CBRNE) - Enhanced Response Force Package
CST Civil Support Team
CX Categorical Exclusion
D&D Deactivation and Decommissioning
DHS US Department of Homeland Security
DOD US Department of Defense
DOS US Department of State
EA Environmental Assessment
EOD Explosive Ordnance Disposal
EVOC Emergency Vehicle Operations Course
FLETCC Federal Law Enforcement Training Center
FONSI Finding of No Significant Impact
HAMMER Volpentest Hazardous Materials Management and Emergency Response Training and Education Center
HAZMAT Hazardous Materials
HVAC Heating, ventilation, and air conditioning
LOTO Lockout/Tagout
MOUT Military Operations in Urban Terrain
MSA Mission Support Alliance
MSC Hanford Mission Support Contract
NEPA National Environmental Policy Act
NG National Guard
NUTEC National Utility Training and Education Center
OE/EERE Office of Electricity Delivery & Energy Reliability (OE)/Energy Efficiency and Renewable Energy (EERE)
PNNL Pacific Northwest National Laboratories
PTA Patrol Training Academy
RCT Radiological Control Technician
S&H Safety and Health
SCADA Supervisory Control and Data Acquisition
SNM Special Nuclear Material
SWAT Special Weapons And Tactics
WMD Weapons of Mass Destruction
WRPS Washington River Protection Solutions
WTP Waste Treatment and Immobilization Plant