Net Count Rates

The background count rate, 
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, is given by
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where
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. The uncertainty in the background count rate, 
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The respective net alpha count rate, 
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, and net beta count rate, 
[image: image8.wmf]R

b

, are given by
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The associated uncertainties are
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where 
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Equations (3) and (4) are written to reflect the fact that the observed gross count rate is a paired observation of the sample’s inherent count rate and the background count rate.  Writing the expression in this manner assures that the uncertainties are calculated correctly.  For further reference see [Currie ‘68] or [Evans ‘55].

Spillover and Net Count Rate Corrections

The count rates can be corrected for spillover.  Note that spillover is a function of mass.  This dependency is explained later. Let
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represent the ratio of the counts in the alpha channel, 
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, to the counts which appear in the beta channel, 
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, and
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represent the ratio of the counts in the beta channel, 
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, to the counts which appear in the alpha channel, 
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.  The uncertainties are
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The corrected count rates are then
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and their uncertainties
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Efficiency and Activity

Writing the efficiency as a function of mass accounts for any self-attenuation in the sample. The efficiency, 
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, is then written as
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where 
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decay-corrected activity at a given mass for a standard, 
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observed count rate. 
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can be represented by one of the following models.

(1) 
Linear
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(2) 
Exponential
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(3) 
Inverse Linear
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(4) 
Inverse Quadratic
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For the simple case of one standard with “zero mass” 
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.  If it is desired to correct for self-attenuation data can be collected using standards of various masses and stated activities.  A fit of the data using one of the models is performed and the coefficients are obtained.   The fit is accomplished using the algorithms in [Press, Teukolsky et al ‘92].

The inverse of equation (15) gives the activity:
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and the uncertainty in the activity is given by
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Spillover

Spillover is modeled in the same way as efficiency.  The only difference is that equation (15) is written as 
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The coefficients for 
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are arrived at using the same fitting algorithms.

Decay Corrections

In performing efficiency calibrations, the activity of the standard being used is decay corrected according to
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where 
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 is the decay corrected activity and 
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is the stated activity of the standard.  
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is the factor that corrects for decay prior to counting and is given by
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where
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is the half life of the standard’s nuclide.  The uncertainty is given by 
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See [ANSI ‘91] and [Debertin ‘88].

Critical Level, Detection Limit and Less-Than Level

The critical level, 
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, the detection limit, 
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, and less-than level, 
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 , are defined in terms of count rate.  These equations are defined most rigorously in order to accommodate a wide variety of simplified cases.  With a little algebra, the more common expressions can be derived. 

The critical level is given by
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The detection limit is given by
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The less-than level is given by
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See [Currie ‘68], [Currie ‘84], and [Lochamy ‘81].

MDA
The MDA as viewed is Ld divided by the efficiency where
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and k = 1.645
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